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Preface

This study was prompted by the need for expert system software to produce required

results in real-time for systems like the Robotic Air Vehicle. The expert svstem processing

speedups realized on serial machines due to state-saving match algorithms like Rete are

impressive, but they still fali short of real-time processing. This research investization

foenses on parallel processiag of such state-saving algorithms with the goal of achiovineg

real-time expert svstem processing.
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Abstract

This research investigation proposes a hyvpercube design (hardware and softwire)
which supports efficient syimbolic computing 1o permit real-time control of an air vehi-
cle by an expert system. Reasl-time processing requirements motivate the researche:r to
alleviate common expert svstem bottlenecks. Examples of these bottlenecks inclhude the
inefficiency of symbolic programming languages like Lisp and the disproportionate amonnt
of vomputation time commonly spent in the match phiase of the expert svatenr mateh

select-act cvcle.

In the design presented in this research investigation, faster processing of the Defense
Advanced Research Projects Agency’s (DARPA) Robotic Air Vehicle (RAV ) expert svsten
software is approached through 1) fast production matching using an expert svstem shell
which emplovs Rete, a state-saving match algorithim, 2) more officient expert system shell
program execution due to implementation using the C-Programming Language and 3)
parallel processing of the RAV expert svstem production cvele using multiple copies of the
serial expert system shell. For this design. the serial C-Language Integrated Production
Svstem (CLIPS) shell. which uses the Rete match algorithm. is modif ed 1o execute in
parallel on the iPSC/2 Hypercube. Although the RAV expert svstem is the application of
interest in this investigation, the parallel expert svstem shell is capable of processing any

CLIPS-svutax software.

Speedups achieved using this architecture are quantified through theoretical timing
analyvsis, and comparison with serial architecture performance results, with earlier parallel
architectures’ performance results. witl best case tl ~oretical analvsis performance results,
and with the “real-time” goal performance. This performance quantification approach
introduces the concept of a performance spectrum which exposes the fevel of muaturity of
RAV expert system processing in particular and the level of maturity of parallel expert

svstem shell processing on a multicomputer in general.




Hypercube Export Svstem Shell - Applying Production Parallelism

[. Introduction

The feasibility of Buproving the performance of production system software (par-
ticularhy. expert system software) running on a parallel architecture is an area of current
interest in artificial intellicenee research. One sponsor of research in this area. the Al Force
Wright Aeronautical Laboratories (AFWALJ, requires a fast multiprocessor architecture
to process an expert svstem capable of piloting a robotic air vehicle (RAV) (2%:1326). The
Strategic Defenise Tnitiative Organization (SDIOQ) is another sponsor of faster expert sys-
tem processing research. This research fivestigation is performed in support of the RAV
expert svstem project and is a follow-on to the investigation by Captain Donald Shakley

(47 Some of the areas recommended for future research in Shakley’s thesis are pursued.

Il Systern Reguire et

The corcept of the RAV project is to create an unmanned air vehicle capable of
antonomous operation (see Appendix A). To develop this robotic capability, AFWAL
contracted Texas Instrumients, Inc. to produce RAV software which, when executed. could
perform all of the basic piloting skills as well as various navigation and obstacle avoidance
funetions £2%:1326) AFWAL and T1 jointly chose an expert system as the preferred RAV

software implementation method for several reasons.

First and foremost0 AFWAL uncovered through literature reviews that efforts to ap-
plv traditional software implementation methods to intelligent vehicle control had failed
due in part to unmanazeability of code (37:77). Second. researchers increasingly are dis-
covering that application- that humans currently do better than machines (like the task of
piloting an aircraft) lend themselves to solution using an artificial intelligence approach.
Because expert system technology is currently one of the most successful branches of arti-
firial intelligence, AFVWATL and T1 chose the expert svstem approach to the RAV software

construction {1X:41.
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Unfortunatels, the RAV expert syvstem has proven to be too compute-intensive to
vield results in real-tivie on any serial or paraliel computer architecture (hardware and
software) developed to dute. Real-time means “the time needed to make a calculation has
to be less than the time from when the need for the calculation is recognized until the time
when the response is needed to take action™ (31:10). The RAV concept is noi feasible until

a computer architecture that produces real-time results processing the RAV expert system

can be developed.

1.2 Related Wark

The only parallel architectures applied to the RAV expert svstem were developed
by Shaklev 1375, {hese fuclnde parallel processing designs implemented on a network of
Texas Instruments (T Fxplorer Lisp machines and on a first generation Intel Personal
supercompnter (iIPSCi Althongh this study showed that the increased parallelism of the
PSC design conld in fuer poodice processing speedup compared to the TT Explorer design.,
the amount of speedip renhized was hampered by the effects of interprocessor communi-
cation overhiead and load inibalance. These effects were caused mainly by the simple data
decomposition enmploved on the 1PSC design {37:72). Furthermore, comparing the iPSC
design to the 11 Explorer design may have allowed factors unique to each of these products
to skew the analysis. That i~ the difference in the observed processing speeds of the two
svatems mayv have resilted from factors otner than just the difference in the number of

phr;:]]"] Praecessors Hm)}it"i.

f.0 Problem Statenment

The goal of this research investigation is the design, implerientation, and analyvsis
of a parallel processing arcuitecture implemented on a second generation Intel Personal
Supercamputer (1PSC/2) aud the quantification of the processing speedup realized by tnis

design as applied to the RAV expert system.

[




1.4 Research Obpctives

The following are the objectives of this research:

e implement an eflicient and effective parallel RAV expert system architecture on
the 1PSC/2 confignred to use varying numbers of processors to gather data on the

speedups realizable through parallelization

¢ quantify the performance results for this parallel RAV design through theoretical
order-of timing analvsiz and through comparisons with past research results, with
serial architecture rosults, with best-case theoretical analysis results. and with the

real - time goal performance

1.5 Scope

The Intel Persamal Supercomputer (iPSC/2) is the multicomputer employed in this
research investigation {see Appendix B). This supercomputer, which can be cornfigured
with up to 12% available processors, is chosen due to availability as well as to research
interest in the performance of artificial intelligence application software executing on a
multicomputer. Limiting the analysis to designs implemented on this one supercomputer
eliminates the possibility of machine-unique factors skewing the results, thus yielding more

quantifiable comparisons of the performance differences between designs.

Software coding i~ done in the C Programming Language. C was chosen over the
major Al programming languages, Lisp and PROLOG, to facilitate better efficiency and
portability (27:190G). C is aiso the only one of these languages available for use on the
AFIT iPSC/2 at the time of this research investigation. Shakley’s parallel RAV design,
however, was implemented not in C but in Lisp on the iPSC. Shakley’s design is not
reimplemented in C as part of this research investigation, because the potential execution
speedups attainable through reimplementation in C on the iPSC/2 are derived much more
easily using theoretical analyvsis.

Because the RAV expert system is the application of interest, it is the only application

to which research desivus are anplied for performance comparison purposes. Pertinent
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RAV computation data ix acquired from and assumed validated by AFWAL RAV project

managers.

1.6 Constraints

The decision to use the iIPSC/2 to implement an RAV parallel expert svstem drives
many program deaign decisions. Certain features of iPSC/2 hardware configuration, such
as a local memory for each processor node, exclude many program design options. Yor
example. algorithms that perform relatively few operations between syuchronizations (i.e.,
have a small grain sizey usually exhibit poor efficiency on multicomputers that employ
multiple local memories ux does the 1PSC/2 (34:533). Consequently, small grain algorithms
are excluded from consideration in this study. In fact, the iPSC/2's multicomputer design
prevents this research investigation from taking advantage of extensive production system

research performed to dute using shared-memory multiprocessors (14:63).

The RAV expert svstem is the application of interest to this research investigation.
Although the research methiodology and design factors are applicable to any parallel archi-
tecture research. the performance resulis realized are unique to the RAV expert system
‘That is to say, even thongli the form of the RAV expert system is not unlike that of anv
other expert system program. the application of the architecture implemented in this inves-
tigation to other expert svstems will not necessarily produce the same performance effects.
This fact is significant when analyzing the expert system shell execution speeds observed
for an application and when using these execution speed analysis metrics to quantify the

merit of the expert system shell.

1.7 Summary

This research investigation addresses improving the performance of production sys-
tem software by executing this software on a parallel architecture. Such an architecture is
applied to the Robotic Air Vehicle (RAV) expert system. The parallel expert system archi-
tecture is implemented on the iPSC/2 supercomputer using the C programming language.
Realization and quantification of performance speedups using this paralle] architecture are

the objectives of this investigation.
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Chapter Il provides buckground information on the key topics underlying this re-
search effort, including expert systems and parallel processing. Chapter Il describes the
Rete match algorithn and issues regarding parallelization of Rete. Chapter IV details
the fundamental approach to this research and introduces performance quantification us-
ing a pecformance spectrun. In Chapters V and VI, the lower and upper performance
bounds of processing the RAV software are derived. Capt Shakley's parallel RAV design
and its performance aic related in Chapter VII. The parallel Rete expert system shell
design and its application to the RAV expert system are presented in Chapter VIII. The
many performance metrics produced in Chapters V through VIII are compared using the
performance spectrum method in Chapter IX. Finally, the research conclusions and some
recommendations stemming from research findings are offered in Chapter X. Appendices
are available for those secking deeper insight into the RAV project itself (Appendix A).
parallel architectures {Appendix B). the theoretical and actual realizations of the parallel
Rete expert system shell (Appendix € and Appendix D, respectively), and programmers’

and users’ manuals for the expert system shell (Appendix E and Appendix F, respectively).
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ll. Background

This chapter summarizes some of the underlying corcepts, uncovered through liter-
ature search, that form the basis of this research, including production systems, expert

svstems, parallel processing. communication overhead, and load imbalance.

2.1 Production Systein

A production systenis a pattern recognition formalism based on string replacement
rules. An order is imposed on these rules to decide which applicable rule to apply next.
Production system computation proceeds as a string-resolution-based search. A control
strategy is used with «tring-modifving production rules to model certain types of human

problem-solving behavior (30:4%).

The major elements of a production system are a global database of facts, a set of

production rules, and a control system.

A factis an assertion which represents a specific item of knowledge. A fact is generally

of the following abstract form (14:8);

(< object >< attributel >< valuel >< attribute2 >< value2 > .. .)

Written in this form, a fact is a parenthesized list consisting of a constant symbol,
commonly called the object, and zero or more attribute-value pairs. An object represents
an entity within a problem’s domain that is of significance to the solution of that problem.
An attribute represents a specific characteristic of its associated object. A value is the

parameter instantiated for a given attribute (36:75).

The global database of facts, also called working memory (WM), is the central data
structure used by a production system. Because facts are held in working memory, the
facts are often referred to as working memory elements (WME). At the start of production
system computation. WAl contains a set of initial facts about the problem domain. As

production system computation proceeds, facts are added and/or deleted from WM.
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A production rule is expressed as strings that represent general knowledge about a
particular subject area. A production rule generally appears in the forme of an “IF condition
THEN action™ implication. By convention, the condition part of a rule is called the Left
Hand Side (LHS) and the action part of a rule is called the Right Hand Side (RHS). The
LHS is consists of one or more condition elements (CEs) that are compared to the actual
state of referenced facts in WM at a given point in computation. The RHS consists of an
unconditional sequence of actions which can add facts to and/or delete facts from WM.
The following is a sample production rule (14:12):

(rule sample :
if ((object? attributel 15 attribute? v)
(objectd attributel )
)
then
(add object3 attributel 12))

This production rule, named “sample”, consists of two condition elements in its LIS
and one action. an add to WM, in its RHS. Note that this production rule form can be
generalized in the following first-order predicate calculus form:

of ((Pi(ryorp) +
(Pplzs.74))
)
then
(Ps(z1,23))
In this example, both predicate Py and predicate P, must be true for predicate P

to he frue.

The production rules, known as the production memory (PM), are matched against
the global database of facts. All rules in PM can match against and alter any facts in WM.
The LHS of each rule in PM is either satisfied or is not satisfied by one or more facts in
the global database in W\l at any given discrete step in production system computation.
If a rule’s LHS is satisfied, that rule may be applied. Application, or firing, of a rule adds

facts to and/or deletes facts from WM as dictated by that rule’s RHS.
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Fer example, the production rule “sample” shown above is satisfied when there exists
one or more facts in WM that meet all of the following conditions: i) the fact’s object
matches object2, 11) the fact’s current value y for attribute! is “15” and iit) the fact's
current value y for attribute 2 is the same as the current value y saved for attribute! in some
other fact whose object matches object. If all three of the above conditions exist in WM,
the “sample” rule is then eligible to fire. adding a new fact with object object3 and value

=127 for attribute 1 ta WAL

[t is possible during production system computation that more than one rule’s LHS
15 satisfied by the state of the facts in WM. The list of satisfied production rules in PM
i~ commonly called the conflict set. The control system chooses which among all of the
satisfied rules is to be applied. The choice of which rule to fire may be based on some
firing priority assigned to ecach rule, on some characteristic of the rule string itself, or on
some arbitrary ordering. The control system may employ an irrcvocable control strategy
or a tentative control strategyv. In an irrevocable strategy, a satisfied rule is selected and
applied without provision for reconsideration later. In a tentative strategy, a satisfied
rule is selected and applied, but with provision made to return later to that peint in
the computation to apply some other satisfied rule instecad. The control system halts
computation when a predefined termination condition, or goal condition, exists in the

current contents of WM (30:1%).

The basic production system algorithm is illustrated in Figure 2.1. This algorithm

is executed as a Match-Select-Act cycle, usually in the following order (11:36):

1. Match - evaluate the LHSs of the production rules to determine which are satisfied
p

given the current contents of WM

2. Select - choose oue production rule with a satisfied LHS from the conflict set: if no

production rules Lave satisfied LHSs, return control to the user
3. Act - perform the actions specified in the RHS of the selected production rule

4. If a termination condition is detected, then return control to the user; otherwise go

to Step 1 (Match)
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Procedure PRODUCTION

1. DATA — initial fact database
2. until DATA satisnes the termination condition, do;
beoein

select some rule R in the set of rules

that can be applied to DATA
DATA — result of applying R to DATA

3. end

Figure 2.1. Production System Algorithm (30:21)

2.2 Erpert System

One class of production svstems is that of expert systems. Expert systems are formal
computing systems, or programs, that use the production system paradigm to offer advice
or solve prcblems by reasoning with bodies of knowledge highly specific to a particular
domain (4:105). The bodics of knowledge are generally extracted from human experts
in the domain. Using this knowledge base, the expert system attempts to emulate the

experts’ methodology and performance toward solving a problem (27:291).

Knowledge engineering is the interdisciplinary Al field concerned with the extraction
of knowledge from domain experts and the transfer of this knowledge into hardware and
software representation.  After the knowledge engineer has developed the basic expert
svstem, the acquired expertise is refined through a process of giving the system example
problems to solve. Domain experts criticize the system’s behavior and make any required
changes or modifications to its knowledge. This process is repeated until the system has
achieved the desired level of performance (27:16). Because the knowledge engineering task
is difficult and expensive, expert systems typically emulate problem solving over a very

limited domain.

The principal components of a rule-based expert system are a knowledge base, an in-
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ference engine, and a man-machinc intcrface (see Figure 2.2). The knowledge base contains
the global database of fucts and the production rules that embody an expert’s expertise.
The inference engine ix the control system that serves as a reasoning mechanism and search
controller. It is the inference engine that performs the match-select-act cycle. These two
expert system compouents represent the major elements present in any production sys-
tern. The man-machine interface simply produces dialog (string, graphics, etc.) between

the computer and the user (I1R:%-13).

User Knowledge Explanatior Inference Output

Facility Fngine f

Interface Base

Data

F'igure 2.2. Fxpert System Components (18)

2.3 Speedup and Puralicl Processing

Compute-intensive appiications, such as the RAV expert system (28), require pro-
cessing bevond the performance ability of conventional, single-processor machines. Ishida
and Stolfo suggest that although speed improvements in single-processor machines have
occurred, “further speed improvements are required for very large [expert] systems with
severe time constraints.” (23:56%) Parallel processing, which means applying several pro-
cessors to run the solution algorithm for a single problem, is one approach to achieving

such speed improvements,

The degree to which parallel processing improves processing speed depends upon the
efficient use of available processors. Two main obstacles to achieving peak performance

using parallel processing are communication overhead and load tmbalance (37:72). One key
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to overcoming both obstacles is the proper choice of a problem decomposition approach.
A decomposition algorithm divides the overall expert system into independent subunits,

or tasks, each of which is assigned to one of the available processors for execution.

2.4 Communication Overhead

Communication, or the passing of required information between processors, seriously
degrades expert system performance because the overhead can become so intense that “the
[processors] spend more of their time communicating than ccmputing.” (6:72) Obviously,
chosing the most current technology parallel processor that performs interprocessor com-
munication as fast as possible is one way of reducing communication time. An algorithmic
approach to reducing the detrimental effects of communication overhead is to decompose
and distribute the expert system tasks in such a way that the interprocessor communica-
tion time incurred by parallelizing the expert system is less than the computation time
saved through parallelization of the expert system. The benefits of a “good” expert system
decomposition are realized regardless of the particular parallel processor’s communication

speed. But an extremely fast interprocessor communication capability caunot be expected

to always overcome the effects of a prner decomposition.

The number of processors over which an expert system’s tasks are decomposed also
affects communication overhead. A phenomenon called the Amdahl effect dictates that any
parallel algorithm shows constrained speedup if there is not enough work to be done by the
nuinber of processors available (34:60). The Amdahl effect suggests there exists an optimal
number of processors upon which a parallel program can be run. Applying more than this
optimal number of processors adds communication overhead that overcomes some of the
computation time savings of parallelizing the system. Figure 2.3 shows how processing can
slow down when more than the optimal number of processors are applied to a problem.
Proponents of parallel processing hasten to point out that Amdahl’s effect occurs under
the assumption that some number of necessarily sequential operations exist to interrupt
the parallel execution of an algorithm. Hence, Amdahl’s argument serves as a way of
determining whether an algorithm is a good candidate for parallelization, rather than as

a provable limit to speedup for all algorithms (34:19).
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Processing Speed

{in units of interest)

1 2 3 4 5 6 7 8
Number of Parallel Processors

Figure 2.3. Example Parallel Speedup Chart
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2.5 Load Imbalance

An imbalance of the task load among the processors also severely degrades perfor-
mance. The goal is to ensure that “the tasks being executed [are] uniformly distributed
amongst the various processing nodes in a manner which maximizes rescurce utilization to
enhance the total throughput of the system.” (2:183) Achieving load balance, like achiev-
ing low communication overhead. also depends on choosing a good problem decomposition.
A good decomposition algorithm maps the expert system tasks to the available processors

in such a wayv as to keep as many of the processors busy doing useful work as possible.

There are two general task allocation policies: static decomposition and dynamie
decomposition. Static decomposition assumes that tasks and their precedence relations
are known before execution. Dynamic decomposition assumes that tasks are generated
during program execution. The advantage of static decomposition is that it allows the
preallocation of tasks to processors, thus reducing the amount of interprocessor commu-
nication. The advantage of dvnamic decomposition is that it makes it easier to keep all
the processors busy becanse tasks requiring processing are assigned to the first available
processor (34:62). But dyvnamic decomposition adds communication overhead to distribute

tasks to availabla processors.

2.6 Summary

A production system consists of a global database of facts and a set of production
rules (constituting the knowledge base), and a control system (inference engine). The basic
production system execution algorithm is the Match-Select-Act cycle. The rule LHSs are
matched against the current facts in the knowledge database, one of the satisfied rules is
selected for firing. and the RHS actions of the selected rule are performed to update the fact
database. An expert svstem applies the production system paradigm to problem solving
using knowledge that is specific to a particular domain. Paralle]l processing, which means
applying several processors to the solution of a single problem, is employed to speed up
processing of a wide range of applications, including expert systems. Two main obstacles to

realizing speedup through parallelization are communication overhead and load imbalance.
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1. Production System Performance Improvenient Concepts

This chapter offers some production system parallelism concepts and introduces the
serial Rete match algorithin. The parallelization of the Rete algorithm lays the groundwork

for a new distributed processor parallel RAV expert system design.

3.1 Potential Production System Parallelism

As discussed in Chapter 11, the three steps that are repeatedly performed to exe-
cute a production svstem algorithm are match, select, and act. Figure 3.1 illustrates the
information flow amoug these three steps. Note that a synchronization point exists af-
ter the select step and before the subsequent act step. This synchronization point has
a serializing effect on the match-select-act cycle. The select step must finish completely
before the next production rule to fire can be determined and its RHS evaluated. Without
this synchronization. a potential race condition exists in which the WM change inputs
to a match-select-act cyvele may be corrupted by outputs of that same cvcle. No other

mandatory svnchronization points exist in the cvcle.

it

ii—C >

Figure 3.1. Match-Select-Act Flow Graph (14:46)

This feature of production systems suggests areas of potential parallelism. For ex-
ample, it is possible to use parallelism within the match step, within the select step, and

within the act step. It is further possible to overlap the processing performed within the
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match step and the select step of the same cycle and the processing performed within the
act step of one cyvcle and the match step of the next cycle (14:45). These potential inter-
step overlaps are represented by the queue symbols in Figure 3.1. But as noted above, it is
not possible to overlap the processing within the select step of one cycle and the subsequent

act step.

3.2 Rete Mateh Algoritlon

All of the information presented in this section is taken from (15) except items noted

from other sources.

The most time consnming step in the execution of production systems is the match.
Matching is a partern recognition activity which involves matching the left hand sides
TLHSs) of all productions against all facts in working memory (WM). Even with special-
ized algorithms, the mateh step constitutes around 90% of the interpretation time (13:4).
Consequently, specdine np the match step in production systems is an arca of intense

research.

The Rete (proucinced “reet™) algorithm is among the most efficient algorithms for
watch vet developed. To achieve this eficiency, Rete exploits two features common to most
production systems: first only a small fraction of working memory typically changes every
match select-act eveler and. second, similar condition elements often appear repeatediy
among the productions in production systems., Rete exploits the first feature by storing
results of match from previous eveles and using them in subsequent cvcles. Rete exploits
the seeond feature by recognizing condition elements referenced in multiple productions

and performing common tests only once (13:4),

The Rete algorithm uses an augmented discrimination network compiled from the
LHSs of the productions to perform the match. In fact, the name “Rete™ comes from the
latin word fc » “network.™ (249) Figure 3.2 shows such a network for productions pl and p2
which appear in the top part of the figure. In this figure, lines have been drawn between
nodes to indicate the paths along which information flows. Information flows from the top

node down along the-e paths,
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To generate the network for a particular expert system application, the production
rules are parsed and “translated™ by a network compiler. Note that the Rete network
compiler is not a cowmpiler in the conventional sense of computing. The Rete compiler
builds a network which serves as the data structure acted upon by the inference engine

during execution of the expert systen.

The network compiler proceeds first with the individual condition elements in the
rules” LHSs. For each condition element, the compiler chains together test nodes that

cheek the followine:

o if the attnbutes in the condition element that have a constant as their value are

satisfied

o if thie attributes in the condition element that are related to a constant by a predicate

are satisfied

o if two occurrences of the same variable within the condition element are consistent]y
bonnd {i.e. worxing memory elements with the same value for the specified attribute

oxiet)

Fach node in the chain performs one such test. These three tests are called intra-
condition tests because theyv correspond to individual condition elements. In Figure 3.2,
the nodes with a single predecessor (near the top of the network) are the ones that are

concerned with individual condition elements.

Onee the network compiler has finished with the individual condition elements, it
adds nodes that chieck for consistency of variable bindings across the multiple condition
elements in the LHS. These tests are called inter-condition tests because they refer to
mltipte coudition eleinents. The nodes with two predecessors are the ones that check for

consistency of variable bindings between condition elements.

Finally, the compiler adds a special terminal node to represent the successful match-
ing of the production to which this part of the network corresponds. The terminal nodes

are at the bottom of the figure.




Note that when two LHSs require identical nodes, the compiler builds a shared set
of nodes in the network rather than duplicate nodes. This feature of Rete ensures that the

same test is not performed repeatedly for multiple rules within a single match step.

To avoid performiug all of the same tests completed during the previous match step.
the Rete algerithm stores the result of a match with working memory as state within the
network. Only changes made to the working memory by the most recent production firing
have to be processed every match-select-act cycle. That is, the input to the Rete network
consists of the most recent changes to the working memory. These changes filter through
the network and. where relevant. the state stored in the network is updated. Due to
the Rete algorithm’s state-saving feature, the amount of effort expended by the matcher
depends primarily on the rate of change of working memory rather than the absolute
size of working memory (11:37). The output of the network consists of a specification
of changes to the list of rules eligible to be fired. This list of rules is called the conflict
sct because only one of these rules may be allowed to fire under the production system
paradigm. Consequently, the rules can be said to be in conflict over the right to be fired

in the current cycle.

The objects that are passed between nodes in the network are called tokens, which
consist of a tag and a list of working memory elements. The tag can be either a +,
indicating that an element has been added to the working memory, or a -, indicating that
an el~ment has been deleted from working memory. No special tag for working memory
element modification is needed because a modify is treated as a delete followed by an
add. The list of working memory elements associated with a token corresponds to the
permutation of those elements that the system is trying to match or has already matched

against a subsequence of condition elements in the LHS.

The discrimination network produced by the Rete network compiler consists of a

number of the following tvpes of nodes:

e Root Node: This node forms the root of the discrimination net. It broadcasts tokens
corresponding to any change in the working memory to all its successor nodes. In

Figure 3.2, the root node is shown at the top.




-----M-----I

o Constant Test (t-const) Nodes: These nodes are used in the network to perform

intra-condition tests, for example, to check if condition attributes that have constant
symbols or numbers as their values are satisfied. Each t-const node checks for one
feature. Whenever the token arriving at the input of a t-const node satisfies the
associated test, it is passed on t. the successors of the t-const node. If the token
does not satisfy the test, it is not passed on to the successors. In Figure 3.2, the
nodes towards the top of the network are t-const nodes. Because the second condition
element of production pl is similar to the first condition element of production p2,
t-const nodes “Class=C2" and “attr1=15" are shared in the network for rules p1 and
p2.

Alpha Memory (alpha-mem) Nodes: If a working memory element satisfies all intra-
condition tests for a condition element, the working memory element is said to par-
tially maich the condition element. Note that it may not, as yet, satisfy all the
inter-condition tests. Tokens corresponding to working memory elements that par-
tially match a condition element are stored in the alpha-mem node for that condition
element. When a token arrives at an alpha-mem node with a + tag, the token is
stored in the alpha-mem node and a copy of the token is passed to the node’s suc-
cessors. If the tag is -, a corresponding token with a + tag must alrcady exist in the
alpha-mem. The corresponding + token is deleted from the alpha-mem node and
the incoming token is passed down to the successors of the alpha-mem node. If two
condition elements in the same or different productions have exactly the saine tests
for a successful partial match, the network compiler generates a shared alpha-mem

node for the two. This sharing of an alpha-mem node can be seen in Figure 3.2.

Beta Memory (beta-mem) Nodes: Just as alpha-mem nodes store tokens that partially
match individual condition elements, so beta-mem nodes store tokens that partially
match two or more condition elements in the LHS of a production. The list of working
memory elements in beta-mem tokens has length two or more. The response of beta-
mem nodes to the arrival of tokens at their inputs is exactly the same as that of
alpha-mem nodes. The beta-mem nodes form the left input of and-nodes and not-

nodes.
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o And-Nodes: The and-nodes are the first of the two-input node types. The primary

function of an and-node is to check for consistency of variable bindings between the
partially matched tokens it receives on its left and right inputs. The right input of
an and-node always comes from an alpha-mem node, while its left input can come
from an alpha-mem or a beta-mem node. Whenever a token arrives at the left input
of an and-node. the and-nod< compares the incoming token to each token stored
in the mem-node connected to its right input to check if they are consistent. For
every right-token which is consistent with the left-token, a new token is constructed
and sent down to the successor nodes. The new token has the same tag as that of
the left-token. and the list of working memory elements is the concatenation of the
working memory elenient lists for the left and right tokens. The case when a token
arrives at the right input of an and-node is processed exactly as above, with left and

right interchanged.

Not-Nodes. The not-nodes are the second of the two-input node tvpes. They also
fiave a left and a right input. The not-nodes are used by the network to implement
negated condition elements. Their functionality differs from that of and-nodes only
in minor ways. One difference is that not-nodes keep reference counts with tokens in
left memory to find when there are no tokens in the right memory that are consistent

with them.

Production. Nodes (p-nodes): These are the terminal nodes in the network. There is
one such node associated with each production. Whenever a token with a + tag flows
into a p-node. it adds an instantiation (corresponding to the token) of the associated
production into the confict set. The arrival of a token with a - tag leads to the

deletion of the corresponding production instantiation from the conflict set.

Other Nodes: Other than the node types mentioned above, the network uses two
more node types. These are the Two-Nodes and the Any-Nodes. The two-node is
used as a place filler in some circumstances, and the any-node is used when the value

of an attribute is to be one of a number of alternatives.

The match step in a Rete network interpreter can itself be divided into two parts: the
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selection phase, which consists of evaluating the t-const nodes; and the state-update phase,
which consists of evaluating the aipha-mem nodes, beta-mem nodes, and-nodes, not-nodes,
and p-nodes. Comparing these two phases, about 758% 1o 95% of the total processing time

is spent performing the state-update phase (14:47).

3.3 Parallelizing Rete

The Rete match algorithm is suitable for parallel implementations. The data-flow
like organization of the Rete network makes it possible to evaluate the activations of dif-
ferent nodes in the network in parallel. It is also possible to evaluate multiple activations
of the same node in parallel and to process multiple changes to working ntemory in parallel
(14:20). Of the many sources of production system parallelism, the following three are par-
ticularly important in the parallelization of Rete and, specifically, of the state-update phase

of the Rete match step: production parallelism, node parallelism, and action parallelisimn.

Production parallelism is accomplished by dividing the productions in a program
into several partitions and performing the match for each of the partitions in parallel.
Figure 3.3 illustrates the partitioning of productions of an expert system. Production
partitioning is a static task decomposition approach. Consequently, the main advantage of
using production parallelism is that no communication is required between the processes
performing match for different productions or different partitions. That is, it is large-
grain parallelism. Disadvantages of production parallelism are that it is limited by 1) the
typically small number of productions affected per change to working memory, 2) the large
variance in the amount of processing required by the affected productions, and 3) the loss

of sharing in the overall Rete network as a result of production partitioning (14:48-49).

Node parallelism, which is unique to the Rete algorithm, means that activations of
different two-input nodes in the Rete network are evaluated in parallel. An advantage of
node parallelism is that foth activations of two-input nodes belonging to different produc-
tions (corresponding to prnduction parallism) and activations of two-input nodes belonging
to the same production (resulting in extra parallelism) are processed in parallel. Node par-
allelism is implemented at a finer granularity than production parallelism to 1) reduce the

effect of large variance in the amount of affected productions processing, and 2) to recover
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Figure 3.3. Production Parallelism (17:48)

some of the sharing lost in the overall Rete network when using production parallelism.
This fine granularity, however, leads to increased communication requirements hetween

processes evaluating the nodes in parallel (14:51).

Action parallelism refers to the concurrent processing of changes made to working
memory when a production fires. Action parallelism enhances the specdup obtainable

using production, node, and other forms of parallelism (14:54).

A significant amount of research has been performed toward implementing paral-
lel Rete on multiprocessors (14, 25). Fine-grain node parallelism, enhanced with action
parallelism wherever possible, is the preferred implementation method when using a mnl-
tiprocessor architecture. This method is attractive because multiprocessors have the ad-
vantage of shared memories (see Appendix B}, which offsets much of the cost of increased

communication associated with node parallelism (14:58).

In a typical multiprocessor design, a single copy of the Rete network is held in shared
memory. The match is broken into fairly small units of work called tasks, where a task

is an independently schedulable unit of work that may be executed in parallel with other
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tasks (17:103). Each task is represented by a token. This token is essentially the same
as that described for the sequential Rete matcher, except that it has two extra items of
information: the address of the node to which the token is to be sent; and. if that node
is a two-input node, an indication of whether to send it to the left or right input. The
list of tokens that are awaiting processing is held in a central data structure called a task
queue. When a processor in the multiprocessor becomes available, it removes a token from
the task queue. If, during processing of a token, new tokens are to be seut out. these
are entered into the task queue for subsequent processing. See (17) for details of a highly
successful parallel production system implementation employing Rete on a shared-memory

multiprocessor.

Unlike the parallel Rete research performed on multiprocessors, implementation of a
parallel Rete matcher on a multicomputer architecture remains relatively unexplored for
two basic reasons. First. the most natural approach to implementing production syvsteins
on a multicomputer is production parallelism, enhanced with action parallelistn. Bt
preliminary simulation analysis of parallel processing using only production parallelism and
action parallelism indicates that the speedups attainable are very low (32:92). Secoud. the
node parallelism approacli was shown theoretically and through simulation to be superior to
production parallelism. But the fine granularity of node parallelism adds communications
costs that may restrict the class of suitable architectures to shared-memory multiprocessors

([-1:5%),

Limited theoretical analysis of a parallel architecture which implemeuts Rete iu an
object-oriented manner on a multicomputer has been performed (16). This research draws
heavily from work performed on multiprocessor designs. At the time of this research investi-
gation, tite oniy parallel multicomputer implementation of a production system interpreter

that employs Rete is IT CLIPS, developed for the FLEX/32 (MIMD) multicomputer (35).

3.4 Summary

Production systems lend themselves to parallel execution. The only mandatory syn-
chronization point in the match-select-act cycle exists after the select step and before the

subsequent act step. Speeding up processing of the match step is critical, as it typically
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constitutes around 90% of the production cycle time. The Rete match algorithm speeds
match time in two wavs: first, Rete saves WM search time by saving state between cycles,
a feature that takes advantage of the small fraction of WM typically changed per cycle;
second, Rete recognizes condition element references common to multiple rules and exe-
cutes common tests only once. The data-flow like organization of the Rete network makes
it suitable for parallel implementations to take particular advantage of production par-
allelism. node parallelismi, ard act parallelism during execution. Parallel multicomputer
implementation of a production system interpreter that employs Rete is an area of rescarch

still in its infancy.




IV. Research Methodology

This chapter presents and justifies the research methodology applied to parallelization

of the RAV expert system during this research investigation. The following are the restated

and expanded goals of this research:

41

Present the fastest processing of the RAV expert system achieved to-date using the
current state-of-the-art parallel design and determine this design’s expected perfor-

mance if implemented on the iPSC/2.

Design and implement a new parallel design on the iPSC/2 using a more eflicient
and effective match-select-act algorithm (Rete) to achieve speedup over the current

state-of-the-art design.

Ensure valid performance comparisons between these parallel designs by considering
implementations of the designs that use the same tools (e.g. hardware. language)

and the same input data wherever possible.

Determine the relative usefulness of these parallel designs by showing their relation
to the expected lower and upper bounds of parallel processing performance and to

the desired “real-time” performance of the RAV expert system.

Justification of Method Selected

It is common practice in parallel computer architecture research to compare the

performance of one’s new design with that of the current state-of-the-art design applied to

the same problem. Speed and correctness of processing are the key performance criteria

analyzed. The comparison of designs is necessary to show the advancement of knowledge

in the field of application. But this approach by itself offers onlv a very limited analysis

of the merit of the new design for two main reasons.

First, the new parallel design is often configured to run on a different machine than

that used by the previous parallel design. Consequently, the performance speedups at-

tributable to the different hardware are not distinguishable from the speedups attributable

solely to the new program design. It is imperative that architectures being compared use
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identical, or at least very similar, hardware to isolate the performance differences at-

tributable to program design.

Second, the true merit of the current state-of-the-art parallel design is often a mys-
terv. This is especially true when current research into a particular area of application is
relatively immature. In this case, it is nct enough that a new parallel design outperforms
the previous “best™ design, because both designs’ performances may still fall far short of

the theoretical performance potential for such an application.

4.2 Performance Spectrum

To determine the true merit of a parallel design for a particular application, one must
determine where on a performance spectrum this parallel design lies in terms of processing
speed. The processing speed is defined in terms that are significant to the particular appli-
cation (e.g.. for expert systems, the performance metric of interest is typically the average
number of rules fired per second). Two logical and essential metrics on the performance
spectrum are a good serial design’s processing speed and the required, or goal, processing

speed.

Performance data on a serial, or single-processor, design for an application is often
available to the researcher. In fact, it is sometimes the failure of a serial approach to
solve a problem in what the user defines as “real-time” that leads to attempts at parallel
solutions. Although the “goodness™ of a particular serial design is difficult to quantify,
still the performance of some serial design is useful to quantify the performance pavback
realized by parallelizing a solution in the new design. The serial design’s performance

serves as the lower bound on the performance spectrum.

The other key metric on the performance spectrum is the goal processing speed. The
maturity level of computer architecture research with respect to a particular application
can only be determined by comparing the performance of a new design with the goal
performance. For example, the “real-time” performance requirement is the goal driving
most research in parallel processing of expert systems. The real-time metric defines the

speed at which computational results must be produced for the particular application to
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be successful.

An additional metric on the performance spectrum is needed to show if it is rea-
sonable for the researcher to expect to meet the performance goal within the limitations
of research assumptions. For example, although processing speed comparisons among a
serial design, a state-of-the-art design, and a new design may ail show progress toward
the goal processing speed. the hardware of choice may not be physically capable of ever
actually achieving the goal performance. Consequently, there exists a research need for
an upper bound performance metric under given application and architecture constraints.
Of course. because the upper bound is not readily attainable like the other performance

spectrum metrics, theoretical and/or simulation methods must be applied.

Figure 4.1 is an example performance spectrum chart illustrating the above metrics
and their interaction for a fictional application. Note that interpretation of this figure

suggests the following:

1. The performance of the serial design applied to this problem falls far short of the goal
performance. This poor serial design performance leads the researcher to consider

the possibility of attempting a parallel solution.

2. The upper bound performance metric suggests that the architectural approach being
taken, under ideal parallel conditions, has tae potential to achieve the goal perfor-
mance. The upper bound performance findings encourage continned research on the

current architecture.

3. The state-of-the-art design realizes only limited performance improvement over the
serial design. This limited performance improvement suggests to the researcher that
perhaps a whole new design approach, rather than enhancements to the previous

design. should be pursued.

4. The new design performance produces significant speedup over the serial design and
approaches the goal performance, lending merit to the rescarch contribution of this

new design.
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Figure 4.1. Example Performance Spectrum Chart
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steps:

Research Investigation Steps

Based on the methodology detailed above, this research is comprised of the following

Step 1: Determine the lower bound performance expected in processing the RAV
expert system. To do this, a “good™ serial design is implemented on the iPSC/2
configured to use only one of its processors. The performance metric observed during
the processing of the RAV expert system on a single processor is recorded as the
lower bound (worst case) performance metric. This metric is needed to determine
the speedup achieved by any of the parallel designs (e.g. Speedup = Time for Parallel

Processors to Compute Result / Time for Single Processor to Compute Result).

Step 2: Determine the upper bound performance expected in parallel processing of the
RAV expert system. The upper bourd is needed to estimate the maximum speedup
achievable under a given parallel design. The theoretical maximum speedup of N
(where N is the number of parallel processors) requires the very unlikely pairing of
perfect load balance and no communication among processors. A more realistic esti-
mate of the minimal communication and optimal load balance achievable is developed
theoretically. Lamanna's hypercube model is adjusted to describe the performance
of the RAV expert syvstem over several iPSC/2 configurations of differing numbers of

parallel processors (26:1).

Step 3: Analyze theoretically the expected performance of the current state-of-the-art
paralle] architecture as implemented on the iPSC/2. This analvsis entails consider-
ing the likely effects on the Shakley design’s peirformance duc to any upgrades added
to date to the iPSC/2 as compared to the iPSC/1. Analysis results for the Shak-
lev design over several configurations of differing numbers of parallel processors are

recorded.

Step 4: Desiagn, implement, and analyze the performance speedup (if any) of a new
parallel architeciure on the iPSC/2 using a better match-sclect-act algorithm and an

appropriate decomposition algorithm. This design is exercised over several iPSC/2




configurations ewploving different numbers of parallel processors and the perfor-

mance metrics are recorded.

e Step 5: Compare the pertormance results produced in previous steps with respect
to the RAV rval-time requirement. AFWAL project managers are interviewed to de-
termine how fast the RAV expert svstem must be processed in order for the RAV
to be feasible {e.g. how fast is “real-time™?). This real-time performance metric is
plotted in relation to the plotted performance metrics determined in Steps 1 througls
4. clysis of the perfortiance metrics shows whether any one of the actual designs
implemented on the iPSC/2 meets the RAV real-time performance requirement ., o,
whether the simul:ited model of an optimal design can support the RAV expert sve.
tem in real-time. In the latter case, such findings suggest how many i°SC/2-like
processars need to be applied to achieve real-time processing of the AV expert
svstem given minimal communication overhead and perfect Joad balance. This iufor-

mation could add msight into the feasibility of the RAV project.

4.4 Statistical Procedures

All RAV expert system desigus operate on the same data sets. The designs are
validated by direct inspection of the results and of performance metrics compiled during

expert system processing.

The expert svatem performance metric of particular interest is processing specd at-
tained. defined in terms of the average number of rules fired per second. Timing data are
also collected on the average time spent in each of the match, select, and act steps during,

Processing.

4.5 Summary

The research methodology applied in this investigation stresses not only the develop-
ment of a new parallel architecture for the RAV expert system but also the quantification
of this design’s contribution to RAV expert system research. The following is a snmmary

of the RAV expert svstem research investigation steps:
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Step 1: Determine the lower bound performance metric realized by a good serial

RAV expert svstem design.

Step 2: Deterntine theoretically the upper bound performance metrics achievable by

a parallel design implemented on the chosen architecture.

Step 3: Determine theoretically the current state-of-the-art parallel design’s perfor-

mance metrics realized when running on the chosen architecture.

Step 1: Determine the actual performance metrics realized by a new parallel design

implemented on the chosen architecture.

Step 5: Compare these performance metrics to the real-time performance require-

ment.
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V. Step 1: Lower Bound Performance

5.1 System Design

To define the processing speedup attributable to parallel processing of a programn, one
must first establish the processing speed of a “good™ serial design as a base of comparison
{e.g. Speedup = Parallel Processing Time / Serial Processing Time). For this research,
the processing speed of a “good™ serial design is needed to delincate a lower bound of
performance expected in processing the RAV expert system. Furthermore, the serial design
must be implemented on hardware similar to the hardware upon which subsequent parallel

designs are implemented if comparison of their processing speeds is to be valid.

The proposed serial design emnloys an existing serial expert system interpreter. or
shell. which uses the Rete algorithm when performing the matcli-select-act cycle on any
input set of rules and initial facts. The design decision to use an existing shell to support
the RAV expert svstem allows this research investigation to take full advantage of the
Rete algorithm optimization efforts afforded during the implementation of the expert sys-
tem shell. Expert system shells considered as alternatives for this implementation include
Inference Corporation’s Automated Reasoning Tool (ART) (1). Carnegie-Mellon Univer-
sity’s OPS5 and paraOPS5 (9), and NASA’s C-Language Integrated Production System
(CLIPS) (5).

The original RAV expert system was developed using ART (sce Appendix A). mak-
ing this expert system shell a good candidate from an RAV knowledge-base portability
perspective. But ART is not an attractive alternative for this design effort for several
reasons. ART is currently available only in Lisp-based and Bliss-based versions. A C-
based interpreter is desired for this investigation, rather than a shell based in a symbolic
langnage, for both program efficiency and program portability reasons (26:190). Also, the

cost of acquiring new versions of ART for the purpose of this research proved prohibitive.

Carnegie-Mellon's OPS5H expert system shell series was developed and optimized by
the originators of the Rete algorithm (10). But, again, the early versions of OPSS are
Lisp-based. A later parallel version, called paraOPS5, can execute in serial mode and is

C-based at a macro-level. But paraOPS5 is only partially C-coded, with the Rete network
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embedded directly in the National Semiconductor NS32032 machine code for realization
of more speedup (17:96). Neither of these existing designs lend themselves to convenient

rehosting into a serial, fully C-based OS5 to execute on the iPSC/2%s Intel 80386 chip.

NASA’s C-Language Integrated Production System (CLIPS) interpreter is chosen
as the expert system sheil ror this research investigation (33:743). As the shell’s name
suggests, the serial CLIPS is written in C specifically for the purposes of efficiency and
portability (3:71). Of course, to exercise the RAV expert system using the CLIPS in-
terpreter, the RAV knowledge base (rules and facts) is transliterated from its original

Automated Reasoning Tool (ART) syvntax to CLIPS syntax with no loss of functionality.

5.2 Detailed Design

A full CLIPS interpreter executes on the host processor of the iI’SC/2. The source
code of the CLIPS program. written in the C-Programming Language. is compiled without
modification using the Greenhill C compiler under the UNIX/System V operating system.
At system initialization, the processor is loaded with all of the production rules in the RAV
knowledge base from which to build a Rete network. Then the initial facts are asserted in
working memory, after which the RAV expert system is ready to execute. When production
system execution is complete, performance data are collected and displayed by CLIPS (e.g.
rules fired, execution time). The high-level algorithm employed by the serial design is

illustrated in Figure 5.1.

Note that this algorithm is the same as the match-select-act cycle algorithm described
in Chapter II. Of course, no interprocessor communication is required because the iPSC/2

is configured as an SISD computer (see Appendix B).

5.3 Implementation

Because the expert system portions of the RAV constitute the scope of this study,
only the Piloting Expert System (PES) and Vehicle Control Expert System (VCES) are
executed under CLIPS (see Appendix A). That is, the conventionally programmed subsys-

tems of the prototype RAV design, such as the Route Planner and the Intelligent Vehicle
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Procedure RETE:

1. do while (termination state not detected);

2. match - update the Rete network with WME

change applied during the last cvcle

3. select - select a production from conflict set

4. act - apply WME change specified by selected
production’s RHS

5. end do;

Figure 5.1. RAV Serial Rete Design

Workstation. are not present to provide inputs to the PES and VCES. Consequently, the
RHSs of key rules are altered to artificially introduce the values normally produced by
one or more of the missing conventional subsystems. In this way, the RAV rules are kept
firing to simulate progression through a reasonable air mission. The benchmark air mission
consists of the execution of the entire RAV takeoff sequence of rules, the initiation of all
possible RAV air maneuver rule sequences in the knowledge base, and completion of the

entire RAV landing sequence of rules.

The initial facts are asserted into working memory by the firing of a startup rule.
The startup rule has no conditions in its LHS, meaning it satisfied regardless of the state
of WM. The RHS of the startup rule consists of a set of fact assertions that, when the
rule is fired, load all of the facts required to activate the desired set of initial RAV rules.
The subsequent RAV rule firings simulate the guidance of an aircraft through the entire
takeoff sequence, a series of air maneuvers, and the entire landing sequence. It is for these
subsequent rule firings that timing data are collected. For this study’s benchmark RAV
execution, a total of 73 RAV rules are fired in approximately 3.5 seconds by the CLIPS
interpreter for an average of 20.9 rules per second. The entire RAV rule set consists of 273

rules. Therefore, the 73 rule firings observed, representing nearly 27% of the RAV rule
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base, is considered a valid number to show performance difference among designs.

5.4 Summary

NASA’s serial C-Language Integrated Production System (CLIPS) shell is used to

execute the RAV expert system. The original ART-syntax RAV knowledge base is translit-

erated into CLIPS-syntax and is adapted to run without external input to allow execution
of the RAV using CLIPS. A full CLIPS interpretter executes ou the Lost processor of the
iPSC/2 under the UNIX/System V operating system. Using this serial design. an average
RAV processing rate of 20.9 rules fired per second is observed. This processing rate serves

as the lower bound performance for execution of the RAV expert svstem.
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VI, Step 2: Upper Bound Performance

6.1 System Design

A critical metric in any parallel architecture design is the estimate of the maximum
speedup achievable. The theoretical maximum speedup of N (where N is the number of
parallel processors) assumes the unlikely pairing of perfect load balance and no communi-
cation overhead. A more realistic estimate of the minimal communication overhead and
near optimal load balance achievable within a given design must be developed theoretically

and/or through simulation.

As Lamanna points out in her Performance Study of the Hyvpercube Architecture.
evaluating the performance of an architecture cannot be divorced from the algorithm used
{25:16). Consequently, the theoretical upper bound performance metric in this research
investigation represents the maximum potential RAV expert system processing speedup
realizable using the parallel expert system algorithm proposed under ideal communication
and load balance conditions. The units of speedup of interest regarding the RAV expert

svstem are the number of rules fired per second.

6.2 Detailed Design

The upper bound performance analysis presented here follows closely the timing

analysis detailed in Appendix C.

Certain assumptions are made at the onset of this analysis to present an ideal com-
puting environment for the RAV expert system executing oun the proposed parallel ex-
pert system shell which employs mainly production parallelism. First, the optimal load
balance is defined as an even distribution of the workload experienced by the serial algo-
rithm amongst the parallel processors available to the parallel program. No computational
overhead is introduced through parallelization. Second, the only activity other than com-
putation on a processor that produces a time cost is interprocessor communication. No
system interface overhead, such as input or output (1/0), is allowed to degrade optimal

performance.
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From Appendix C, the time required to complete one match-select-act cycle under

the proposed parallel design is defined as follows:

( Equation 6.0)

O([mazpg([sumPECEs (match filter time)] + local select time)] +
select compare/exchange time +

act broadcast time + local act time )

This equation states that the cycle time consists of 1) the maximum time spent by
one of the processors updating its local Rete network and selecting a candidate rule to
fire from its local conflict set, plus 2) the time for the processors to determine, through
a gray-code compare/exchange, which processor has the best candidate rule to fire , plus
3) the time to broadcast the actions specified in the RHS of the rule to fire. Under
the ideal condition assumptions described above, the time spent by each processor to
update its Rete network, select from its conflict set, and fire the best rule’s RHS actions
is uniform across all processors (e.g. perfect load balance). Furtliermore, the sum of the
times spent processing these uniform task loads equals the total time spent processing the
entire workload serially. Thus Equation 6.0 simplifies to the following, with N being the

number of available processors:

(Equation 6.1)

O(( total serial processing time / N ) +
select compare/exchange time +

act broadcast time )

6.3 Implementation

The task of determining the upper bound performance for the parallel design pro-
posed in this investigation now becomes that of acquiring actual and/or expected times for

the total RAV expert system serial processing time, the average select compare/exchange
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time, and the typical act broadcast time experienced on the iPSC/2 hardware. Substitut-
ing these time values into the equation presented in the previous section yields the upper
bound of expected performance in terms of the total processing time required to complete

one match-select-act cycle.

The total serial processing time, determined empirically using the serial CLIPS design
described in Chapter V, is 3.5 seconds to fire 73 rules. The select compare/exchange time
and act broadcast time each depend on the data rate of the interprocessor communication
lines on the iPSC/2 and on the size of the data structure sent as a message. Because the
minimum message data structures for both types of messages werc knowrn prior to actual
parallel design implementation, the processing times for these activities are also determined

empirically on the iPSC/2 hardware.

The data structure passed during a gray-code compare/exchange consists, as a min-
imum, of the integer I) of the processor passing the message and an integer value repre-
senting the firing priority, or salicnce, of its candidate rule. A total of d communications
of such a structure (where d is the dimension of the hypercube) is required to ensure the
structure representing the best rule-to-fire candidate is at the base processor, say node 0.
The last communication required in the select step is the broadcast of the best rule-to-fire
structure from the base node 0 to the other processors. The further assumption is made
that a broadcast requires the same amount of time as does a node-to-node communica-
tion. A total of d+1 communications during the select step add cost to the total program

execution time.

The data structure broadcasted during the act represents the RHS actions of the rule
selected for firing. These RIS actions can consist of any number of fact assertions, fact
retractions, and interface actions (such as I/O). Again, to produce ideal computing condi-
tions for optimal processing speed, only fact assertions and fact retractions are considered
in this analysis. Another simplification is that all of a selected rule’s RHS actions are
passed in a single data structure large enough to contain the average number of assertions
and retractions specified by a typical rule in the RAV rule set. The assertions are assumed
sent in the form of a typical RAV fact string and the retractions are assumed sent in the

form of an index to the fact in WM to be retracted.
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Inspection of the RAV knowledge base suggests that the average rule’s RHS specifies
approximately two fact assertions (1.46 average observed) and about two fact retractions
(1.18 average observed). The typical length of a fact string to be asserted is approximately
231 characters, which represents a message size of 231 bytes for each asserted string.
Integer IDs of facts to be retracted add R bytes each to the message size. Under the above
assumptions. the typical single message broadcasted during the act step is about 470 bytes

long.

The communication times required for passing of select step and act step messages
on the iPSC/2 are determined empirically using a simple ring communication program
that sends messages of the specified size around the nodes of the hypercube. configured
as a ring. Timing data are collected as message passing proceeds. Each select message
communication can be completed in 0.00424 seconds. The single act message can be

broadcasted in 0.00776 seconds.

Summing the times derived above, the upper limit on the time required for the pro-
posed parallel design to process the 73 rules fired in the RAV benchmark follows Equation

6.1:
(3.5 /N)+ ((d+1) * 0.00424) + (0.0077G) scconds

where N = 27 is the number of parallel processors used. Dividing the 73 rules fired
by the result of this equation vields the upper bound performance, in rules per second. for

the proposed parallel design.

6.4 Summary

The theoretical upper bound performance metric represents the maximum poten-
tial RAV expert system processing speedup realizable using the proposed design under
ideal communication and load balance conditions. Assumptions made to simulate ideal

processing conditions include the following:

o Ideal load balance suggests even distribution of the serial workload amongst available

parallel processors.
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e Neither computational overhead due to parallelization nor svstem interface overhead

due to I/O is considered.

¢ The minimum-size data structures are assumed passed whenever communication is
required, and both node-to-node and broadcast communication times are uniform

and equal.

o All of the actions specified in a rule’s RHS can be contained in a single data structure

for communication purposes.

Comniunication times required for passing messages of sizes tyvpical to the RAV are deter-

mined empirically. The equation for the upper limit on processing performance is

(3.5 /N )+ ({(d+1) * 0.00424) + (0.00776) seconds

where N = 29 is the number of parallel processors used.
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VIl Step 3: Current Best Performance

7.1 System Design

The performance of any new parallel architecture must be compared to that of any
cxisting parallel architecture that 1s considered state-of-the-art. This comparison is nec-
essary to show advancement in knowledge for fast processing of a particular application.
But for the comparison between parallel designs to be valid, the designs being compared
must experience similar support environments (e.g. hardware, compilers, languages). Oth-
erwise, it is difficult to discern whether performance differences observed are due to the

designs or rather to their individual support environments.

The latest architecture applied to the RAV expert system was designed by Shakley
(37). The processing speed of the new parallel architecture proposed in this research inves-
tigation is compared to the speed iwchieved by Shakley's architecture. Shakley's program
design was implemented in Lisp and on the first generation Intel Personal Super Computer
(iPSC/1), a support environment different from that of the new architecture. Because ac-
tual reimplementation of the Shakley aesign in C and on the iPSC/2 is neither within the
scope of this research nor desired, a theoretical “reimplementation” is offered instead. That
is, the likely effects on the Shakley design’s performance due to any upgrades to the iPSC/2
as compared to the iPSC/1 are analyzed theoretically. The theoretical performance results
for Shakleyv's design are then used for comparison to the new parallel design’s performance

results.

7.2 Detailed Design

The purpose of Shakley's research investigation was to analyze and explore the fea-
sibility of translating the RAV expert system written in ART for the T1 Explorer into
CCLISP for rehosting onto the Intel iPSC/1 Hypercube (see Appendix A). The focus of

Shakley’s study was search parallelism within a production system (37:10-12).
Y P

In his paralle] RAV expert syvstem design, Shakley exploits production parallelism.

Production rules are equally distributed in a round-robin fashion across available proces-
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sors in the iPSC/1 hypercube multicomputer. The rules constituting a processor’s local

production memory (PM) are formied into a linked-list data structure (37:26).

In ART representation. each RAV fact comprises part of a frame-like structure of
facts, called a schema. Shakley preserves support for schemata in his design (37:41).
Schemata facilitate indexing into facts in working memory (WA!), thus shortening the
time required to find and check the value of a given fact during the match step. Each

processor hosts a copyv of the entire RAV WM,

For his parallel RAV expert system design, Shakley implements on each processor
an enhanced version of a serial inference engine developed by Winston and Horn (3%).
Enhancements to the Winston and Horn serial engine include support for schemata, for
salience (priority) selection of rules, and for selection from a conflict set (or agenda) of
rules (37:50). The ART rules and schemata are translated into a form useable by the new
inference engine. The high-level algorithm employed in Shakleyv's design is illustrated in

Figure 7.1.

Shakley organizes the iPSC/1 processors into a spanning tree for interprocessor coms-
munication (37:56). A spanning tree connection pattern is another name for the gray-code
definition of near-neighbor processors in a hypercube network (2:4:F-1). This spanning tree
connection pattern defines the parent-child relationships among processors referred to in

Figure 7.1.

Shakley uses a test suite of small, prearranged sets of facts to trigger firings of subse’s
of rules in PM. From these firings, results are traced to confirim correctness of operation
and to vield performance metrics on the speedup achieved by the parallel RAV expert

system design (37:58).

Shakley acknowledges two shortcomings in his design. First, the round-robin assign-
ment of production rules to processors creates a load imbalance. Although all processors
host the same total number of production rules, these rules are of varving length and com-
putational complexity, thus causing an imbalance. Second, the test snites of prearranged
facts are too small to take significant advantage of parallelism. The small test sets have too

little span of effect on the production rules in PM, thus limiting the potential production
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Procedure HYPER:

1. do while (termination state not detected):

2. paralle] match
- each processor waits to receive WALL change

from its parent (except root node)

- each processor sends WME change to its child

in the tree (if any)

- each processor adds WML change to its local
copy of the WM

- each processor matches the rules in its PAM

against the facts in its WM

3. global select

- each processor waits to receive the selected rule

from its child (if any)

- each processor adds the rule received from its

child to its conflict set

- each processor sends selected rule to its parent

on tree (not root);

- oot processor holds production to fire after its

select is done

4. global act

- root processor sends to its child the WME change

specified by selected rule’s RHS

5. end do:

Figure 7.1. RAV iPSC/1 Hypercube Design (37:47)
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parallelisni.

7.3 Implementation

On the iPSC /1. Shakley's parallel design is exercised using onc of two subsets of the
RAV rule base, which he terms “small” and “large” rule bases. For comparison purposes,
the faster performing small rule base configuration is analyzed. Shakley’s expert system,
using the updated Winston and Porn inference engine, fires an average of 1 rule every 11
seconds in a serial mode. Speedups are realized in parallel mode, with a peak performance

of about 0.5 rules per =econd experienced in a 16-node configuration (see Figure 7.2},

3
Processing Speed
(rules per second)
2
1
12 4 8 16 32
Number of Parallel Processors

Fignre 7.2, iPSC/1 RAV Performance Results (37)

Uploaded to the iPSC /2, the Shakley design will experience immediate performance

iinprovement due to the raw processing power of the iPSC/2 clhip technology compared to
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that of the iPSC/1. At best. a processing speedup of 4 times can bhe expected due to use
of the iPSC/2%s 803x6 chip versus the iPSC/1's 80286. A speedup can also be expected in
communications capability. Even though the iPSC/2's peak message passing rate of 2.8
Mbytes per second ({21:1-11)) is hardly discernable from the i’SC/1's rate of 2.5 Mbytes
per second ((22:1-22)). the iPSC/2 communications scheme will generate some speedup.
because the passing of a message between two nodes on the iPSC/2 does not interrupt the

processing on intermediate nodes. as is the case on the iPSC/1.

Experiencing the maximum possible beneficial effect of the processing and communi-
cations upgrades in the iPSC/2. the Shaklev parallel design’s performance can be expected
to improve to R rules per second, at best. This analysis is abandoned at this point, because
the further possible performance improvements in the Shaklev design realizable due to the
iPSC/2°s broadcast capability and to a hypothetical reimplementation of the design in €
will certainly not be enough to bring the design’'s performance up within the 20-rules-per-
second range of the serial CLIPS lower bound performance. It is apparent that the simple
Winson and Horn inference engine, even executed in parallel, cannot compete, in terms of

processing speed. with the state-saving Rete algorithm emplayed in CLIPS.
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VIl Step 4: Parallel Rete Performance

This chapter describes in detail the proposed hypercube expert system shell, called
HyvperCLIPS. The source code {Appendix D), programmer’s manual (Appendix E), and

user’s manual (Appendix F) offer more detail for the interested reader.

8.1 System Design

The proposed design implements a parallel production svstem interpreter which uses
the Rete match algorithm. A C-based version of the serial C-Language Integrated Produc-
tion System (CLIPS) interpreter is adapted to run in parallel on the Intel iPSC/2 (33:743).
The system is configured to take advantage of production parallelism. enhanced by action

parallelism. The goals of this system are the following:

support the speedup features inherent in the Rete network as much as possible {e.g.

state saving. one-time comparisons)
¢ minimize detrimental communication overhead, especially in the match step

e distribute productions in such a way that the workload is well balanced among the

available processors

e assign productions that are expected o be activated at the same time to different

processors to enhance parallelism

8.2 Detailed Design

Each active processor supports a full production system interpreter. At system ini-
tialization, each processor is parsed a subset of the productions in the RAV knowledge base
from which to build a local Rete network. With this static decomposition approach. no
interprocessor communication is required during the match step because all of the nodes
needed to process state updates of a production are local to the production’s host proces-
sor. Furthermore, each processor’s interpreter performs a local select step, picking its local
candidate production for overall system firing. The local select step is performed without

interprocessor communication.
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The first interprocessor communication occurs when the processors must compare and
exchange their locally selected productions to determine which of these productions is to
be selected for firing. Using the gray-code compare/exchange paradigm for 2¢ processors
connected in a hvpercube (see Appendix B), a total of d compare/exchanges must be
performed before the best candidate production is guaranteed to be at the root processor

(24:F-1).

Once the root processor has the globally selected production, the working memory
element (WAE) change specified by the RHS of that production is broadcasted to all
processors. This WME change is the input to each of the processors that triggers the
subsequent match step. The entire match-select-act cycle repeats in this fashion until a
termination condition is detected or no productions are matched. Figure 8.1 illustrates
the high-level algorithm implemented in this design. Note that the few communications

required in this design occur only in the select and act steps.

This design exploits all match-select-act cycle parallelism discussed in Chapter III.
Parallelism within the match step is achieved when all processors update their Rete sub-
graphs concurrently. Select step parallelism is possible becausce each processor performs
its select on its local conflict set upon completion of its local match, thus creating the
potential for multiple processors to be in their respective local select steps concurrently.
The processing within the match step and the select step of the same cycle can overlap
when the local match on one processor completes and triggers the start of the local se-
lect step before one or more other processors complete that same match step local'y. Act
step parallelism occurs in that, when the globally selected production is fired, the working
memory element change is broadcast to the waiting processors, triggering their concurrent
match steps. Overlap of the act step of one cycle and the match step of the next cycle is
conceivable, That is, the WME change is allowed, by design, to arrive at some processors
before it arrives at others, although “broadcast™ implies the change arrives at all processors
simultaneously. Whether or not changes arrive simultaneously, local match steps begin as

soon as the WML change is received.
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Procedure HYPER-RETE:

4.

. do while (termination state not detected);

. parallel match

- each processor receives WM change from root processor

- each processor updates its local Rete network

. parallel local select

- each processor selects a production from its Jocal
conflict set

global select
- processors perform gray-code compare/exchange

- Toot processor holds production to fire when

compare/exchange done

. broadcast global act

- root processor broadcasts WM change specified

by selected production’s RHS

. end do;

Figure 8.1. RAV Hypercube Rete Design
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8.3 Implementation

A host program executing on the front-end host processor of the iPSC/2 provides
the user interface to the HyperCLIPS shell. The host prompts the user for the desired
cube dimension, the application knowledge base, and the desired run time options (see
Appendix F). The node program, which is executed on each active hypercube processor,
downloads from the host processor the entire initial working memory fact set and its
partition of the total production rule set. Each node then initializes and executes its local

version of CLIPS.

To implement HyperCLIPS, two adaptations to the serial CLIPS shell are required:
1) the global select gray-code compare/exchange capability and 2) the global act broadcast
capability (from Figure 8.1). For both of these communication activities, the main design

challenge is the choice of data structure to pass as a message.

From an implementation-independent perspective, it seems that the typical message
consists of a structure representing one complete rule. For the select compare/exchange.
the structure passed by a processor node represents the top rule on the node’s local conflict
set. For the act broadcast, the structure passed represents the one rule selected globally

for firing.

Unfortunately, the data structure for a CLIPS rule is a multi-directional, multipli-
linked list of multivariate structures. Because the many pointers employed in such a
structure on a given processor have meaning only in the context of that processor’s local
memory, the rule structure must be par d and the actual structure values put into an
array to be sent to other processors. Once received, such an array must again be parsed,

reassembled into CLIPS rule form, and processed.

Parsing, passing, and reassembing of rules is not chosen for the HyperCLIPS imple-
mentation for several reasons. First, the raw complexity of parsing and reassembling a
rule structure is prohibitive. Second, the communication time required to send such a po-
tentially large message, added to the computation overhead time required for parsing and
reassembling the rule structure, does not suggest efficient use of processing time. Third,

a rule structure in CLIPS is tightly entwined in the local Rete network, including data
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describing the rule’s dependencies amnong other rules in its network. Passing of a complete
rule, then, entails passing large portions of a processor’s local Rete network, including data
that is probably unneeded for processing at another processor and possibly even incorrect

and corrupting if processed at another processor.

The chosen select compare/exchange design approach is to pass not the entire rule,
but a structure consisting only of the priority, or salience, of the top rule on a processor’s
conflict set and the ID of the processor holding the particular candidate rule for firing.
After the compare/exchange is complete, processor 0 hclds the salience of the rule to fire
and the ID of the processor where that rule resides. Processor 0 then broadcasts this
information to all processors, triggering the processor holding the globally selected rule to
enter a master processing state while the other processors enter a slave processing state

for the upcoming global act broadcast.

The act broadcast design approach is for the master processor to send as messages
only the RHS actions of the globally selected rule, rather than the entire rule structure.
Because the firing of any rule ultimately results in either no action on WM or a series of
working memory element additions and/or retractions (see Chapter III), each fact addition
and retraction is broadcast as it is about to be processed on the master processor. Conse-
quently, the same addition or retraction is received and processed on the slave processors,

lagging the length of the broadcast time behind the master’s processing state.

A fact string specified for assertion in the selected rule’s RIS must be built by parsing
the RHS'< C°'TTPS fact structure, but this parsing task is much less complex than parsing
the entire rule structure. An assert message consists of this fact string and a tag specifving
an assert operation is required. A retraction specification need only consist of the integer
ID of the fact to be retracted, because all processors maintain identical copies of working
memory with identical working memory element IDs. A retract message consists of this

working memory element ID and a tag specifying a retract operation is to be performed.

Unfortunately, execution of the RAV expert system on HyperCLIPS resulted in slow
down compared to the serial CLIPS implementation. A two-node configuration produced

an average of only 12.6 rules fired per second, followed by 5.11 rules per second using four




nodes and 2.01 rules per second using eight nodes. These results, although discouraging,

are in keeping with the timing analysis conclusions presented at Appendix C.

Note from Appendix C that, for the HyperCLIPS design to produce speedup, the

following two conditions must exist:

1. The RHSs of all production rules must affect many condition elements (CEs), or
predicates, in the LHSs of many other rules. Ideally, the average number of CEs

affected would equal the number of processors available.

2. The production rules must lend themselves to fortuitous assignments to unique pro-
cessors. Specifically, the production rules containing CEs that initiate processing

along non-interacting Rete network paths should be assignable to unique processors.

Inspection of the RAV expert system execution suggests that the first condition is not
adequately met. The average number of facts affected per rule firing is observed to be less
than three. with an observed range between 1 and 13. These few affected facts represent
less than 0.5% of a WM that averages approximately 700 total facts during execution.
Furthermore, the facts changed due to rule firings are in turn observed to affect an average
of just over four rules each, with an observed range between 1 and 18. These four rules
represent only 1.5% of the 273 rules present in the RAV knowledge base. The small span
of effect per rule firing severely limits the benefits attainable through parallel processing

of the RAV expert system using production parallelism.

HyperCLIPS, as implemented in this research investigation, has no mechanism to
take full advantage of the second condition for producing speedup described above and in
Appendix C. To the extent that the RAV rule base lends itself to fortuitous assignment of
rules to unique processors, HyperCLIPS leaves the burden of rule assignment to the user.
No algorithmic process is currently available to recognize dependencies and relationships
among rules in an expert system’s knowledge base and to use dependency data to drive
near-optimal assignment of rules to processors. Consequently, the load imbalance intro-
duced by the user’s inability to assign rules to processors in a way that takes advantage
of production parallelism further limits the processing speed observed for the RAV expert

system using HyperCLIPS.
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&4 Summary

The proposed hypercube expert system shell is called HyperCLIPS. HyperCLIPS
employs a full serial CLIPS interpretter executing on each available processor in the iPSC/2
multicomputer. Each iPSC/2 processor is parsed a partition of an application’s total
rule set, and performs a normal CLIPS match step on the local rule set. Then a gray-
code compare/exchange of each processor’s highest-salience rule (tagged with thie rule’s
home processor) transfers the salience of the rule to fire to the root node. After the root
broadcasts the salience and identification information for selected rule, the home processor
for the selected rule becomes the action master processor. The master drives the other
slave processors to mimic its fact assertions and retractions as the selected rule’s RHS
is fired. Execution of the RAV expert syvstem using HyperCLIPS results in slow down
compared to the serial CLIPS implementation. The slow down results 1) from the small
span of effect produced when the RHSs of typical RAV rules are fired and 2) from the lack
of a mechanism which recognizes RAV rule inter-dependency data and uses this data to

drive assignment of rules to processors.




IX. Step 5: Performance Comparison Findings
P P 9

In this chapter, the performance results produced in Chapters V through VIII are

compared to the RAV expert system real-time processing requirement,

Real-time processing of the RAV is defined through interview with AFWAL project
managers (7). The current ART RAV implementation on the TI Explorer Lisp machines
executes at a rate of 15 to 30 rules per simulated vehicle second. The simulated vehicle
second is a unit derived to account for the processing delay introduced when the expert
system must wait for the vehicle simulator to produce needed vehicle control parameters.
One simulated vehicle second equals approximately 2.5 actual seconds. Therefore, real-
time processing of the RAV entails firing rules at a rate roughly between 37 and 75 rules
per second. An estimate of 50 rules per second is plotted as the real-time RAV performance

requirement in Figure 9.1.

The plotted performance metrics produced during analysis of lower bound perfor-
mance, upper bound performance, and paralle] Rete performance complete the remainder
of Figure 9.1. Note that the current best performance is omitted from Figure 9.1 because

it falls entirely below the lower bound.

The lower bound performance experienced by the serial CLIPS design is impressive,
although it does fall short of real-time. CLIPS performs well for the RAV expert system
application because of the Rete state-saving feature (from Chapter III). CLIPS’s state-
saving takes full advantage of the very small rate of change of working memory observed
in Chapter VIII, which is why CLIPS soundly outperformed the Shakley parallel design in

termns of rules fired per second.

The upper bound performance metric is plotted for the shown number of processors
(N = 2%) and derived from the equation for upper bound offered in Chapter VI. The
upper bound suggests that it is reasonable to expect to achieve real-time processing of the
RAV expert system on the iPSC/2 using HyperCLIPS under ideal conditions. However,
the model in Chapter VI does not take into account the dependencies between rules in the

RAV knowledge base that limit the ability to achieve perfect load balance.
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The performance of HyperCLIPS executing the RAV expert system is also plotted
in Figure 9.1. The slow down experienced by HyperCLIPS suggests, at best, that an
algorithmic mechanism is required to assign input rules to available processors in a way
that optimizes potential production parallelism. Worst case, the slow down suggests that
the RAV expert system itself does not exhibit the inter-rule dependencies necessary to

allow a significant amount of production parallelism.
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X. Conclusions and Recommendations

10.1 Research Conclusions

Parallel processing is a promising approach to achieving real-time processing of expert
svstem software. The keys to improving parallel processing performance are reducing
communications overhead and balancing task load. The major factor in both of these

goals is the proper choice of a problem decomposition.

This research goes bevond just producing a new parallel architecture design. The
performance results of this design are quantified in relation to the lower and upper perfor-
mance bounds. the current state-of-the-art design’s performance, and the required real-time
performance. This approach not only adds validity to the performance results of the new
design but also exposes the level of maturity the RAV expert systemr research has achieved
as a consequence of this design. This performance quantification methodology serves as a
template for other researchers performing parallel computer architecture design as applied

to any application.

10.2 Research Recommendations

The findings analvzed in Chapter IX suggest that rescarch into parallel processing
of the RAV expert system is still in its infancy. The speedups realized using serial CLIPS
(Chapter V) support the continued use of state-saving algorithms, such as Rete, to pro-
cess the RAV. But the characteristics of the RAV observed in Chapter VIII suggest that
the system lends itself to very limited potential speedup due to production parallelism.
Therefore, RAV expert system research is perhaps better served by approaching paral-
lel processing from the standpoint of node parallelism, possibly using a shared-memory

multiprocessor (see Chapter I1I).

The critical component missing during this research investigation is an algorithmic
mechanism to assign production rules to available parallel processor nodes. Such a mecha-
nism will parse rules, recognize dependencies among rules that promote production paral-

lelism during rule firings. and use this information to assign rules to available processors.
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The results of the timing analysis in Appendix C suggest that the assignment algorithm is

driven by the span of effect of actions in the RHSs of all available rules.

An “optimal™ assignment algorithm potentially poses an NIP’-complete problem, an
fast execution of the algorithm may require parallel processing itself! But an assignment al-
gorithm is critical for designs, such as HyperCLIPS, that depend on production parallelism

to realize processing speedup.

Further exercise of the HyperCLIPS expert system shell, using applications more
amenable to production parallelism, is recommended. HyperCLIPS also serves as a possible

tool for the development of an optimal assignment algorithm described above.

10.32  Summary

Parallel processing of the RAV expert system is still in its infancy as an arca of
research. Processing of the RAV expert system using serial CLIPS executes at an impres-
sive speed due to the state-saving Rete algorithm. But the HyperCLIPS implementation
performs poorly for the RAV application due to the limited potential production paral-
lelism characteristic of the RAV and due to the need for a rule assignment mechanism.
Further exercise of HyperCLIPS using applications with significant potential production

parallelism is recommended.
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Appendix A. Hobotic Air Vehicle Backyround

The Robotic Air Vehicle (RAV) is a concept under exploration by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air Force Wright Aeronautical Lab-
oratories (AFWAL). The concept is to create an unmanned air veliicle capable of au-
tonomous operation. The RAV must be able to perform basic piloting skills as well as
passive terrain following. terrain avoidance, obstacle avoidauce, and autonomous naviga-
tion. The mission of such a vehicle would consist of intelligent reconnaissance or attack of
high risk. heavily defended targets. A contract was awarded to Texas Instruments Incor-
porated (TI) in September 1985 to develop a system architecture and to demonstrate the
feasibility of some of the key componen's of such a svstem (2x). TI completed its system

development and demonstration in June 1988 (12:1).

The final syvstem architecture developed by TI is shown in Figure A.1. The RAV
system software consists of six top level modules: the Route Planner, the Piloting Expert
System (PES). the Vehicle Control Systemn (VCS), the Spatial Database, the Intelligent
Vehicle Workstation (IVW), and the Natural Language Menu (NLAlenu) system (12:6).
This architecture includes several expert subsystems linked to a central controlling agent.
the Piloting Expert System (PES). The expert s—~bsystems consist of the following: a
Passive Navigation module for estimating the current platform location on a digital map
and for generating a terrain model for terrain following: an Airspace Expert Svstem for
three dimensional situation awareness; a Route Planner for gencrating the RAV flight path;
a Vehicle Control System for translating Ligh level flight directives into stick and throttle
manipulations. The PES coordinates the activities of these subsvstems and is the final

arbiter of RAV responses to the environment (12:15).

During typical system operation, mission and flight data is entered via NL\enu
or Voice and sent to the PES. The PES sends the waypoint coordinates, including target
location, to the Route Planner, which calculates a path through the wavpoints. As the PES
executes the route plan. it responds to inputs from NLMenu and IVW vehicle simulation
and queries the Spatial Database. Spatial Database queries activate both the Passive

Navigation subsvstem and the Airspace Expert System. These inputs are used to pilot
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Figure A.1. RAV Systein Architecture (11:7)

the vehicle and to execute the mission plan. To perform complex maneuvers such as steep

turns and rolls, the PES issues airspeed, altitude and heading commands to the VS,

Figuri- A 2 shows the physical placement of the RAV subsystems with respect to their
hardware requirements. The RAV system software resides in a hardware configuration of
four Texas Instrument Explorer I Lisp Machines and one Digital Equipment Corporation
(DEC) MicroVax I All machines are linked together via a Local Area Network (LAN).
A message scheme. known as Post Oflice, facilitates communication among the machines
and their resident software subsystems. The Explorers support all of the Al software and
the vehicle control and simulation software. The MicroVax Il performs the mathematic

computations required for con entional software systems (12:9).

Knowledge bases for these expert systems were developed using conventional kuowl-
edge engineering techniques. The methodology was based on the approach used to train
fighter pilots. The knowledge acquisition process followed a series of qualification training

sessions and evaluation chieck-rides. Using this technique, the system capabilities inereased
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in an ordered fashion. The knowledge bases became hierarchical as new concepts were built
on old skills. Each level of competency was validated before moving to the next training

level (12:28).

The knowledge representation used to develop the knowledge bases for the expert
svstems is a combination of TI Dallas Inference Engine (TIDIE). Automated Reasoning
Tool (ART), and/or Lisp representations. These three tools are used to represent the

knowledge bases at three different levels of abstraction.

TIDIE was developed for the RAV project to provide a readable, high-level knowl-
edge representation for piloting rules. The TIDIE representation consists of OBJECTS,
representing the aircraft state variables; NEEDS, representing the goal to be met: and
PLANS. representing how the goal is to be met (12:12). NEED and PLAN macros expand

these high level structures into lower-level ART components.

Inference Corporation’s ART is a commercial artificial intelligence shell. It provides
an inference engine for rule-based reasoning. ART also uses the Rete algorithm for pattern
matching. The ART representation consists of typical expert system RULES and facts
organized into frame structures. called SCHEMAS (12:13). A Lisp-based version of ART

is emploved in the RAV architecture,

All three levels of knowledge representation are compatible. TIDIE is implemented in
ART rules and Lisp “unctions, thus allowing free intermixing of TIDIE and ART constructs
in a single knowledge base source file. Lisp was used directly for low level command modules
like the VS (12:12).

The TI architecture has demonstrated the feasibility and practicality of a Robotic
Air Vehicle (RAV). The entire ensemble of subsystems has proven the effectiveness of
distributed cooperating expert systems. The RAV provides a performance benchmark
for a near real-time control system (12:35). Unfortunately, current hardware support for
symbolic computing such as that used by the PES is not adequate to permit real-time

control of a vehicle by an expert system (12:33).

In the final report, TI recommended three main follow-on research directions to

be pursued: first, investigate how the RAV prototype would handle a more high fidelity

A-4




simulation; second, investigate real-time expert systems, distributed expert systems, and
maintenance and verification of expert systems; and, third, extend the piloting capabilities

currently employed by the RAV prototype (12:35).
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Appendix B. Parallel Processing Archilectures

Computer architectures may be classified by many methods, or taronomies. Flynn's
Taxonomy is based on the concepts of instruction stream and data stream (R:1901). An
instruction stream is a sequence of instructions performed by a computer. A data stream

is a sequence of data used to execute an instruction stream.

The Single-Instruction stream, Single Data stream (SISD) category includes most
serial computers. The Single-Instruction stream, Multiple Data stream (SIMD) category
includes processor arravs. The Multiple-Instruction stream, Multiple Data stream (MINMD)
category contains most multiprocessor systems. Finally, no computers in comman use
today belong in the Multiple-Instruction stream, Single Data stream (MISD) category

(34:16). This leaves SIMD and MIMD as the two main categories of parallel processors.

As implied by the label. an SIMD parallel systemn has multiple processors operating
the same instruction syn.hronously on separate data streams. Examples of SIMD archi-
tectures are the ILLIAC IV and Connection machines. The MIMD parallel svstem hLas
multiple processors capable of operating on multiple data streams with different opera-
tions asynchronously. Examples of MIMD architectures are the Butterfly and the iPSC

hvpercube (20).

There are many possible processor organizations, or interconnection methods, for par-
allel architectures. The following are examples of commonly used intercannection methods

(31:25-29):

o Mesh network - Processors are arranged into a g-dimensional lattice. Commuunication
is possible only be.ween neighboring nodes, thus interior nodes can communicate with

2q other processors (see Figure BB.1).

o Pyramid network - Processors in a pyramid network of size p form a complete 4-
ary rooted tree of height log,p augmented with additional interprocessor links that
allow processors in every tree level to form a two-dimensional mesh network (see

Figure B.2).
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o Shuffle-Erchange Network - This network consists of n = 2% processors and two kinds
of connections: shuffle and exchange. Exchange connections link processors whose
numbers differ in their least significant bit. The shuffle connection links processor i

with processor 2i modulo (n-1) (see Figure B.3).

e Butterfly Network - (k+1)2F processors are divided into k+1 rows, or ranks, contain-
ing n = 2k processors each. Each processor has four connections to other processors

(see Figure B.4).

o Hypercube (Cube-Connected) Network - A cube-connected network is a butterfly with
its columns collapsed into single processors. The network consists of n = 2% processors
forming a k-dimensional hypercube. Two processors are adjacent if their labels differ

in exactly one bit position (see Figure B.5).

Figure B.1. 2-D Mesh Network (34:26)

Another important feature of a parallel architecture is the memory organization
emploved. Most reported paralle]l SIMD architectures assume a shared global memory
among all processors (34:30). MIMD architectures, however, can be further classified as

multiprocessors or multicomputers based on the memory organization.

An MIMD multiprocessor is characterized by shared memory among the processors.
In a tightly coupled multiprocessor. these processors work through a central switching

mechanism to reach the shared global memory. A loosely coupled multiprocessor is also
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Figure B.2. Size 16 Pyramid Newwork (34:27)
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characterized by a shared address space, but this shared address space is formed by com-

bining the local memories of the processors (34:35-38).

An MIMD multicomputer has no shared global memory. Instead, each processor
has its own local memory. Process cooperation occurs either through message passing or

through memory shared between pairs of processors (34:41).

Two parallel architectures are of interest in this research investigation. The first is
a network of four Texas Instruments (TI) Explorer II Lisp machines. The second is the

second generation Intel Personal Supercomputer (iPSC/2). Each is an MIMD architecture.

The first host architecture of the RAV expert system consists of a network of four
TI Explorer 11 Lisp machines. They form a loosely coupled system. Each system has its
own local memory and a common bus structure connects the systems. All systems share

a central file server. Each of the four systems are very powerful Lisp processors.

The second architecture of interest is the Intel iPSC/2 hynercube. This system can
be configured with up to 128 processor elements (PE). The iPSC/2 is a multicomputer
made up of Intel 80386 processors. The flexibility of this system, along with its ready

accessibility, make it a useful tool for this study.

Examples of the previously discussed architectures are given in Figure B.6. Only the
TI Explorer Lisp machine and the iPSC/2 are evaluated as part of this research investiga-

tion due to availability.




SIMD Processor Arrays:

MIMD Multiprocessors:

(tightly coupled)

MIMD Multiprocessors:

{loosely coupled)

MIMD Multicomputers:

ILLIAC 1V
Connection Machine
Burroughs PEPE
IBM GF-11
ICL/DAP

C.mmp (Carnegie-Mellon)
Encore Multimax
Sequent Balance 8000

Cm™ (Carnegie-Mellon)
BBN Butterfly

Inte: iPSC
Ametek S/14
NCUBE/10

Figure B.6. Summary of Architectures (19, 34:1350,31-41)
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Appendix C. Timing Analysis of RAV Expert System

One key to the amount of processing required to perform a state update in a Rete
network during the match step is the number of cc..dition elements (CEs} present near
the top of the network. Each CE may be considered an initiator of a path or set of paths
into the Rete network. As a network path(s) initiator, a CE defines a fixed number of
productions that can potentially be affected by the information flow down that path(s). A
CE’s span of effect is important to this timing analysis because match speed-up availabie
from production parallelism is proportional to the average number of affected productions

(14:51).

When a working memory element (WME) change is input at the root node of a Rete
network. the information flow resulting from the processing of that WME change passes
through one or more CEs and down through some number of nodes in the network. Cali
the time from the initial receipt of a WME change at the root node to the termination of
information flow caused by that WME change the match filter time. Call the time required
by the interpreter to select a production from the updated conflict set the local select time.
Similarly, call the time required by the interpreter to evaluate the RHS of the selected rule

and to send it to the root node in the network the local act tine.

The term “local™ implies that the specified activity is performed using the data (i.e.
conflict set, Rete network) that are saved in the memory that is local to the processor
running the interpreter. Although this definition is assumed for serial processors. it is

useful later in the context of multicomputers.

Consider the very simple exa:uple case in which the WME change input at the root
nude of the Rete network matches only one CE at a subsequent t-const node. A production
system interpreter implemented on a serial processor will complete a match-select-act cycle

in the amount of time defined by the following (in order-of notation):

O ( match filter time + local select ti.ne + local act time )




In the opposite extreme case, assume a WME change input at the root node matches
all of the CEs at the subsequent t-const nodes. A serial production system interpreter will

complete one match-select-act cvcle in the following time:
O([sum?"CEs (match filter time)] + local select time + local act time )

Now cons er the production system implemented on a multicomputer configured as
in the design presented in this research investigation. Call the time required by processors
to perform the gray-code compare/exchange of productions in the select step the selcct
compare ferchange time. Call the time required to broadcast to alt other processors the

production selected for firing the act broadecast time.

Returning to the simple example case in which the WME change input matches only
one CE, the parallel production system interpreter will complete one cyvcle in the following

time:

O({mazpg (match filter time + local select time)] +
select compare/exchange time +

act broadcast time + local act time )

This equation states that the processor, or processing element (PE), that requires
the most time to update its local Rete subnetwork and to select a preduction from its local
conflict set will make the processors that have completed these steps wait before entering
the select compare/exchange step. Of course. the processor that hosts the Rete subnetwork
that holds the single affected CE will experience the maximum match filter time. Note
that the local act time does not appear as mazpg (local act time) because all processors
are assumed to enter the local act step synchronously as a result of the act broadcast and

because the local act step will require the same amount of time on earh processor.

omparing the results of serial versus parallel processing of the single-affected-CE
case, both systems experience the same match filter time and the same local act time.
The parallel system could experience a slight savings in local select time because the

affected Rete subnetwork will always have a conflict set smaller than »r equal in size to
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that of the whole Rete network on the serial system. Consequently, the processor vn
the parallel system that hosts the affected Rete subnetwork could potentially perform its
local select faster than could the processor in the serial design. But this potential local
select time savings is sure to be overcome by the communication cost incurred during select
compare/exchange and act broadcast. This finding suggests that the multicomputer design
is not as fast as the serial processor design when processing WME changes that affect very

few CEs.

Considering the example case in which the WME change input matches all CEs, the

parallel production system interpreter will complete one cycle in the following time:

O({mazpg[sumPECES (match filter time + local select time)]} +

select compare/exchange time +

act broadcast time + local act time )

Again, some processor (PE) will require more time than the others to process all of
the Rete subnetwork updates required by its many CE matches and to select a production
from its local conflict set The other processors wiil wait for that processor to finish before

entering the select compare/exchange step.

Comparing the resnlts of serial versus parallel processing of the all-CE -affected case.
hoth svstems experience the same local act time. The parallel system could experience
a substantial savings in match filter time if the workloads distributed to the available
processors are of equal computational complexity. Assuming this good load balance, the
sum of the match filter time saved and the local select time saved in parallel design can
reascnably be expected to be greater than the sum of the select compare/exchange time
incurred and the act hroadcast time incurred. This finding suggests that the multicomputer
design can be expected to perform faster than the serial processor design when processing

WME changes that affect many uniquely assignable CEs.

The conclusion reached by this analysis is that the performance of the parallel pro-

duction system design proposed in this research investigation depends upon the knowledge




hase of the application of interest. For this design to perform well, the application pro-

duction system must exhibit the following qualities:

1. The RHSs of all production rules must, on the average, affect many CEs. Ideally,

the average number of CEs affected would equal the number of processors available.

2. The production rules must lend themselves to fortuitous assignments to unique pro-
cessors. Specifically, the production rules containiag CEs that initiate concurrently

filterable Rete network paths should be assignable to unique processors.




Appendix Do Parallel KAV Erpert System Program

The appendix presents the actual C language code implementing the HyperCLIPS
shell. Note that culy the original CLIPS routines adapted for HyperCLIPS are included
here. Routines not shown in this appendix are used in HyperCLIPS in their vriginal CLIIPS

form.

/#t*tt*tt#ttt#t**##t**tt#*ttt*t*t#t#t#**t**tt###t#ttt**tt#*ti*#***t*#*t#*
-- DATE: 11/17/89

-- VERSION: 1.0

-~ TITLE: CLIPS Toader for iPSC/2 Hypercube

-~ FILENAME: HOST.C

-- AUTHOR: Capt William A. Harding

-- COORDINATCR: R. Norris

--  PROJECT: Hypercube Expert System Shell - Application of
-- Produccion Parallelism (Thesis)

-- OPERATING SYSTEM: UNIX System V/386 R3.0 (for iPSC/2)
--  LANGUAGE: C

-~ FILE PROCESSING: Compile and link with chost.def, stdio.h

-~ CONTENTS:

-~ main - executive module

-- power - exponentiation subroutine
-~  FUNCTION:

-- This program prompts the user for the dimension of the cube to be
-- used for the expert system shell. It then loads processors »ith
-~ the knowledge base represented in user-entered files. The host
-- chen prompts for the run limit {number of rules to fire before

-~ stcpping) and the watch option desired (to display rules, facts,
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fp = fopen ("watch.out","w");
fprintf (fp,"\nCLIPS EXPERT SYSTEM SHELL FOR THE iPSC/2 HYPERCUBE\a\n"
)5

fprintf (fp," ¥ritten by Capt William A. Harding");

/***‘*iitt****‘t********t##**tt##********‘#*i****#*#tti*tt*t****i*#***ttt/

/* Get cube dimension from user and send to nodes x/

/***##***###*#***t*******t***#**t***#****#****‘**t#**t**************#****/

printf (" Enter cube dimension (1-5): ");
scanf ("%d",&dim);
csend (DIM_TYPE, &dim, sizeof(dim), ALL_NODES, NODE_PID);

fprintf (fp,"\n\n** Dimension %d\n",dim);

/#*t*i**#*#*#***#t!vt#t**#*##*#******#*##t*t****#********#*t*************/
/* WM loop: Prompt for the names of filss holding facts and templates +/
/* and send these so each node can initialize its copy of working memorys/

/* The loop waits for the nodes to load a file before requesting another*/

/tttittttt##*#*h‘****#*ﬂ****#t*****ttt#*####ﬁ#**##***#*****#tt**#****t***/

dummy = 1; /% dummy - no meaningful value */

nun_nodes = power(2,dim);

printf ("\n Enter fact file names for all processors: ");

printf ("\n -> ");

scanf ("Ys", sname);

vhile ((infile = fopen{(sname, "r")) != NULL) {
fclose(infile);

for (i = 0- 1 < num_nodes; i++) {




-- or all affected during the run). Run times are then collected from
~~ the nodes, as well as any "watch" results, and these are displayed.
t‘##**#***l##**#***‘*i*#t**ttt##t**tt**#t*t**t**#*#*t##*#*******#****t*t*/
#include "/usr/ipsc/lib/chost.def"

#include <stdio.h>

#define NODE_PID 1 /* Node process id */
#define HOST_PID 1 /* host process id */
#define ALL_NODES -1 /* all active nodes in the cube */
#define ALL_PIDS -1 /* all active processes in the cube */
#define DONE_TYPE 0 /* type of done message */
#define DIM_TYPE 10 /* type of dimension message */
#define FILE_TYPE 20 /* type of filename message */
#define LIM_TYPE 30 /* type of run limit message */
#define ITEM_TYPE 40 /% type of watch item message */
#define ACT_TYPE 50 /* type of watch action value message */
#define FIRE_TYPE €0 /* type of rules fired message */
#define TIME_TYPE 70 /* type of time message */
#define REPORT_TYPE 80 /% type of report signal message */
#define GO_TYPE 90 /* type of synch start message */

#define TIME_SIZE (sizeof(long)) /* size of time message in bytes */

main ()

{

int dim, /* dimansion of cube «/
num_nodes, /* number of nodes in current cube dim =*/
i, /* iteration counter (thru processors) */
dummy, /* dummy variable (done messages) */
run_limit, /* run limit for desired run */
vatch_action_valie, /* t--ns watch option ON or OFF */
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check_firings, /* checks consigtency of rules fired */
start, /* signifies 18t node’s responses comings/
rules_fired; /* number of rules fired during run */
float longest_time, /* maximum run time of all nodes */
rules_per_sec; /* run’s average rules fired per second */
long run_time; /* run time returned from a node */
char fname[15], /* loadfile name x/
sname[15], /* setfile name x/
watch_item{[15]; /* item to display using watch option  */
FILE *fp, /* file pointer */
*infile; /* input file pointer */

/*tt#**#***#i**i#***#************‘**##t**#*********#****t***t#*******t**#/

/* Load the cube */

/##*###****************************t***#l******t***#*********************/

setpid (LC.T_PID);
load ("node", ALL_NODES, NODE_PID);

/**#ttt#tt**t**tt###******‘##****#**‘t*##*#t#**##****#*t***i*#***t*******/

/* Print welcome message */

/##tttt#tt#t#*#ttt#*tt*##*t**###t**#**t#*“#*#****~..n 4***#**##**##***#/

printf ("\n CI.IPS EXPERT SYSTEM SHELL FOR THE iPSC/2 HYPERCUBE\n\n"
)i
printf (" Written by Capt William A. Harding\n\n");




fp = fopen ("watch.out","w");

fprintf (fp,"\nCLIPS EXPERT SYSTEM SHELL FOR THE iPSC/2 HYPERCUBE\n\n"
)s

fprintf (fp," Written by Capt William A. Harding");

/***#**#*ttt#t#t***‘*t***t**t##it#*#*#‘**t**###*t##t***!**t#*****#****t*t/

/* Get cube dimension from user and send to nodes */

/#*****#**t*i#t#*********##**#**t#**#*#*#i#**#i#t*it***#*#*********#*****/

printf (" Enter cube dimension (1-5): ");
scanf ("%d",&dim);
csend (DIM_TYPE, &dim, sizeof(dim), ALL_NODES, NODE_PID);

fprintf (fp,"\n\n*+* Dimension %d\n",dim);

£ Aok ok KKK KK K KK KKK KR K o KKK KR o K KKK Kk kR Kok ok
/* WM loop: Prompt for the names of files holding facts and templates =*/
/* and send these so each node can initialize its copy of working memory*/

/* The loop waits for the nodes to load a file before requesting another*/

/t*#***#**##**t******#******t******#***#t##t**#***********t#******i******/

dummy = 1; /* dummy - no meaningful value */

num_nodes = power(2,dim);

printf ("\n Enter fact file names for all processors: ');

printf (“\n -> ");

scanf ("{s”, sname);

while ((infile = fopen(sname, "r")) '= NULL) {
fclose(infile);

for (i = 0; i < num_nodes; i++) {
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csend(FILE_TYPE, sname, sizeof(ename), i, NODE_PID);
crecv(DUNE_TYPE, &dummy, sizeof (dummy));
}
printf (" -> ");
scanf ("/s", sname);
!
fclose(infile);
for (i = 0; i < num_nodes; i++) {

csend(FILE_TYPE, sname, sizeof(sname), i, NODE_PID); }

/*******it*t*#*#*****tt******#*#************‘*#***#****t**tt*t#t**#****t*/
/* PM loop: Prompt for each node’s rule file names and send these to  */
/* the nodes so they can access the files to load their rule bases. */

/% The loop waits for the node to load a file before requesting another.x/

/#*t*******###****t*******#*********#******##****#t****###*tt*t#*********/

for (i = 0; i < num_nodes; i++) {
printf ("\n Enter rule file names for processor %d : ", i);
printf ("\n -> ");
scanf ("Y%s", fname);
while ((infile = fopen(fname, "r")) !'= NULL) {
fclose(infile);
csend(FILE_TYPE, fname, sizeof(fname), i, NODE_PID);
crecv(DONE_TYPE, &dummy, sizeof (dummy));
printf (" -> ");
scanf ("%s", fname);
}
fclose(infile);

csend(FILE _TYPE, fname, sizeof(fname), i, NODE_FID);




/****##****‘#i‘t#*####*t***#t***#**tt#‘#*ttt#*t#tt#tt#**t*#**t***********/

/* Prompt for run options (run_limit, watch_item, watch_action_value) */
/* and send these to all nodes. This serves as the nodes’ "GO" signal. */

/*#tt*#t‘*****t##**t**###*##****t#‘*###****##*#**##*****‘t***t**t*t*****t/

printf ("\n Enter run limit (-1 for no limit): ");
scanf ("%d", &run_limit);

csend(LIM_TYPE, &run_limit, sizeof(run_limit), ALL_NODES, NODE_PID);

printf (“\n Enter watch item (lower case): ");
scanf ("Ys", watch_item);

¢send(ITEM_TYPE, watch_item, sizeof(watch_item), ALL_NOGDES, NODE_PID);

printf ("\n Enter watch_action_value (1-ON, O-OFF): ");

scanf ("%d", &watch_action_valus);

printf ("\n\n Executing... \n\n");

csend (ACT_TYPE, &watch_action_value, sizeof(watch_action_value),

ALL_NODES, NODE_PID);
for (i = 0; i < num_nodes; i++) {
crecv(DONE_TYPE, &dummy, sizeof(dummy));}

cgend (GO_TYPE, dummy, sizeof(dummy), ALL_NODES, NODE_PID);

/“‘*“‘*“#*#"###******#***#‘**#*##*t*‘#**"*‘#****#‘*##**#************l

/* Get run data from nodes, compute and display the results. */

/t‘l#“t#*#t‘#ttt#*#*tt##***#**ti***#*it##t#‘*tt##‘#t#‘*t#*#***#*###t###i/
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longest_time = 0.00;

start = 1; /x true - first time thru =/

for (i = 0; i < num_nodes; i++) {
c¢send (REPORT_TYPE, dummy, sizeof (dummy), i, NODE_PID);
crecv(FIRE_TYPE, &rules_fired, sizecf(rules_fired));
if (start == 1) {

check_firings = rules_fired;

start = 0; /* false - first time only */

}
else {
if (check_firings !'=s rules_fired)
printf ("\n** ERROR -> rules fired discrepancy **\n");
}

crecv(TIME_TYPE, &run_time, TIME_SIZE);
if (longest_time < (float)run_time/1000.00)

longest_time = (float)run_time/1000.00;

rules_fired--; /# subtract out setup rule firing */

rules_per_sec = (float)rules_fired / longest_time;
printf ("\n** Run Completed after ’%d rule firings.\n", rules_fired);

fprintf (fp,"\n** Run Completed after %d rule firings.\n",

rules_fired);
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printf ("\n#** Total Run Time = %0.5f seconds.\n"”, longest_time);

fprintf (fp,"\n#** Total Run Time = %0.5f seconds.\n", longest_time);

printf ("\n*»* Average for Run = %0.5f rules/second.\n",
rules_per_sec);
fprintf (fp,"\n#** Average for Run = %0.5f rules/second.\n",

rules_per_sec);

fclose (fp);

/****t***#***#*#t##‘##*#*#*****t##***#*t*##t**#&*********#************t**/

/* Close channels to the cube for this run x/

/***t##**#*#**#*t**tt**t**********tt######*#**#*t*#‘*****************#***/

killcube (ALL_NODES, ALL_PIDS);
}

/#tt**¥*t#t**#**#**i***#**#**tt*#****itt#**#*****t*******************#***/

/* Subroutine Power */
/***‘#**#‘*‘*#t‘###****#*#*******‘**‘**‘**‘***‘**##*t*#*****t**i*#*******/
pover(base, exp)

int base,exp;

{
int answer;
for (answer = 1; exp > O; exp--)
answer = answer * base;
return(answer);
}

AT I I T r e I Iy
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-- DATE: 11/17/89
-- VERSION: 1.0

-- TITLE: CLIPS Node for iPSC/2 Hypercube

--  FILENAME: NODE.C

--  AUTHOR: Capt William A. Harding

-~ COORDINATOR: R. Norris

--  PROJECT: Hypercube Expert System Shell - Applying

-- Production Parallelism (Thesis)

--  DPERATING SYSTEM: NX/2 Node eXecutive (for iPSC/2)

-- LANGUAGE: C

-- FILE PROCESSING: Compile and link with host.c, cnode.def, stdio.h,

-- msgs.h, and clips.h

-~  CONTENTS:

-- main - executive module

-- power - exponentiaticn subroutine
-- FUNCTION:

-- This program receives the dimension of the cube to be used for the
-- expert system shell and determines which nodes will remain active.
-- It then initializes the CLIPS expert system shell and loads the

-- knowledge base from user-entered files (at the host). Each node

-- then receives the run limit (number of rules to fire before

-- stopping) and the watch option desired (to display rules, facts,

-- etc. affected during the run). Run times are sent to the host,
-- as well! as any "watch" results (saved as a file at the host).

‘*‘t““““‘###tt##*#t*t###*#t##*#*##*#t*t#‘*‘**##‘**######**‘t##**##tt#/

#include "/usr/ipsc/lib/cnode.def"




#include <stdio.h>
#include "clips.h"

#include "msgs.h"

#define HOST_NID myhost() /* host node id */
#define HOST_PID 1 /* host process id x/
#define NODE_PID 1 /* Node process id */
#define ALL_NODES -1 /* All nodes’ ids x/
#define DONE_TYPE C /* type of done message */
#define DIM_TYPE 10 /* type of dimension message */
#define FILE_TYPE 20 /* type of filename message */
#define LIM_TYPE 30 /* type of run limit message */
#define ITEM. TYPE 40 /* type of watch item message */
#define ACT_TYPE 50 /* type of watch action value message  */
#define FIRE_TYPE €0 /* type of rules fired message x/
#define TIME_TYPE 70 /* type of time message */
#define REPORT_TYPE 80 /* type of report signal message */
#define GO_TYPE 90 /* type of synch start message */
#define TIME_SIZE (sizeof(long)) /* size of time message */

/*#**###**##**##*‘**t*###‘#**#ii*#***#*##*t#####*#i***#****##*###t***t*t#/

/% Global Variables (seen also in files: engine.c and factmngr.c) */

/#*#******#*##t*#***#*t‘##t*t###*#**#*#**##tt#***##*t***#*t#***#******ttt/

int dim, /* cube dimension */
my_node, /* my node number */
my_pid, /* my node process id */
num_nodes, /* number of nodes in current cube dim */
RHS_type, /* type of action message */
RUNNING; /+ global flag - master rule firing node*/
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long start_time; /* start time of run */
RHS_msg my_RHS_buf; /* global msg -rule firing mechanism */
main()

/***t##**#*#*******************V***tt*#ti*#t***#t*#****#******t#**#t*#t**/

r

/* Local Variables x/

/#$t¢***t****#t*****t*t*t********i*#*#*#!##t#t*‘**#**#**t**t******t******/

{

int dummy, /* dummy variable (done m2ssages) */
run_limit, /* run limit for desired run */
wvatch_action_value, /* turns watch option ON or OFF x/
msg_type, /* message type buffer */
rules_fired; /* number of rules fired during run */

long /* start_time, start time of run */
Tun_time; /* total time of run */

char fname[15], /-~ dfile name */
sname[15], /* setfile name */
watch_item([15]; /* item to display using watch option %/

FILE *f1; /% file pointer */

/#“#“‘#*‘#t**#t#ttttt##*#‘##t#ﬁt###‘***#tt****#**#*#**t*##t**#**t**i#**/

/* each node define its node number and pid */

/ttti“tt#‘###*tt#t#t##t*##tt#tt*‘#‘t‘tt#‘*t#ttt#t##t#**ttt**#t#*t#tt*##t/




my_node = mynode();

my_pid = mypid();

/*t**t****#**i#**#**t***tt**t*iit***t**t**#****#t****#******t******#*#t**/

/* receive dimension from host, compute number of nodes, & start CLIPS %/

/t*##tt*#tt**tt*****#*##*****##t*#**##*t#‘***#*#********##******#******#*/

crecv (DIM_TYPE, &dim, sizeof(dim));
num_nodes = power(2,dim);

if (my_node >= num_nodes) exit (0);

init_clips();

RUNNING = FALSE; /#* no nodes firing rules yet */

S ko k ok ok ok Rk K R K R K K Rk K Rk Rk bk ko Ok ok kK Rk kR R R K Rk R kR ok koK
/+ WM loon: Receive from the host names of files holding facts/templatess/
/* and read these to initialize the local copy of working memory (facts)*/
/* Continue this loop for all fact file names sent from the host. */

JRr Rk R R Rk oK R R R R Rk ok Rk kAR R R R Rk R kR R Rk R kR Rk R Rk kK R kR kR Rk kR kR Kk [

/* set_conserve{''on"); on - pprule info not kept */

dummy = 1; /* dummy - no meaningful value %/

crecv(FILE_TYPE, sname, sizeof(sname));
vhile ((fl = fopen(sname, "r")) !'= NULL) {
fclose(fl);
load_rules{sname);

csend (DONE_TYPE, dummy, sizeof(dummy), HOST_NID, my._pid);
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cre-v(FILE_TYPE, sname, sizeof(sname));

}
fcluse(fl);

[ K KK R R R KR K KR K HOR KK o R KRR KRR KKKk Kk Kk Kok Kk ko [
/* PM loop: Receive rule file names from the host and access the files #/
/* at the host to load the local rule base. Continue this loop for */

/* all rule file names sent from the host. */

/*t#***#**‘#t#**ttt#**it**#t‘#**#t#*****#*##t##**#t*tt*###*#*#tt*t*t*t***/

crecv(FILE_TYPE, fname, sizeof(fname));
vhile ((fl = fopen(fname, "r")) '= NULL) {
fclose(£fl);
load_rules(fname);
c¢send (DONE_TYPE, dummy, sizeof(dummy), HOST_NID, my_pid);
crecv(FILE_TYPE, fname, sizeof(fname));
}
fclose(fl);

/tt#tt*t##*t*###t#t*##t#ﬁ*i####**#*t*tt****#**#***##****##****t*****i#***/
/* Receive run options from host (run_limit, watch_item, */

/* watch_action_value). Then reset CLIPS environment and start the run.x/

/‘I*‘##t**‘*‘*******##t**#*t#****####***“*“‘t**************#**t********/
crecv(LIM_TYPE, &run_limit, sizeof(run_limit));
crecv(ITEM_TYPE, watch_item, sizecf(watch_item));

crecv(ACT_TYPE, &wvatch_action_value, sizeof(watch_action_value));

sot_wvatch(watch_item, watch_acticn_value);
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reset_clips();

csend(DONE_TYPE, dummy, sizeof(dummy), HOST_NID, my_pid);

crecv(GO_TYPE, &dummy, sizeof(dummy));

rules_fired = run(run_limit);
run_time = mclock() - start_time;

/* displayfacts(); * enable if test desired */

/1*******#*#*t********###*##**#****##t*t‘##*ttt*#t#*****t**tt#****t#*t**t/

/* Send run data for this node to the host */

/t#**t##***t#*********i*****#**#t***‘**#**#**t*####*****i#*###*t#t*******/

crecv(REPORT_TYPE, &dummy, sizeof (dummy));
csend(FIRE_TYPE, &rules_fired, sizeof(rules_fired), HOST_NID, my_pid);
csend (TIME_TYPE, &run_time, TIME_SIZE, HOST_NID, my_pid);

)

/#*ttttt******#**#**tt*ttt*******t#*#####***#******###*#*#*#****t*******i/

/* Subroutine Power x/
/#tt#****i**#**#‘**#*#***t**t*#t*##*****t*tt#*#*t*#t*#i**t*#*************/
power (base, exp)

int base, exp;

{
int answer;
for (answer = 1; exp > 0; exp--)
answer = answer * base;
return(answer);
}
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/#t‘#*tt#tt#t“‘#‘t##"#“#"*i#‘*#‘#i‘#‘*###‘#t‘t#‘tt#t*#t**#/
/» USRFUNCS: The function which informs CLIPS of any user */
/* defined functions. In the default case, there are no */
/= user defined functions. To define functions, either */
/* this function must be replaced by a function with the */
/* same name within this file, or this function can be x/
/* deleted from this file and included in another file. */

/* User defined functions mav t¢ inzluded in this file or =/

/* other files. */
/* Example of redefined usrfuncs: */
/* usrfuncs() */
/* { */
/* define_function("furnl",’i’,funl,"funi"); */
/* define_function("other",’f’,other,"other"); */
/+ } */
/**i‘*******‘#*****‘4#*****************#**********************/
usrfuncs()

{

}
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/*  HyperCLIPS Version 1.0 11/17/89 =/

R T T e e e e T L LRl Ll LY
/* NOTE! : the following routines are compiled within =/
/* "engine.c". Only new routines added for HyperCLIPS =/
/* or original CLIPS routines adapted for HyperCLIPS =%/
/* are shown here. Other routines not shown here must =/
/* still be compiled in their original CLIPS form x/
/* within “"engine.c" x/

/*t#****#*tt*#**t#*tt*****#*t*******#*t#*#*#**#****#t#**/

/t**%i**i*#*t?it*t***#*‘t****t*#***t##**#t**#**#**#*l#*#/
/* "C" Lanyuage Integrated Production System */
/* ENGINE MODULE */

/t#*t**tt*t#tt#tt##*t##*##tt****t****#*#**##*#t********#/

#include <stdio.h>

#include “clips.h"

#include "engine.h"

#include '"msgs.h"

#define ALL_NODES -1 /* All nodes’ ids

#define BUFFER_SIZE (sizeof(gray_msg)) /+ size oi message buifer
#define RHS_SIZE (sizeof (RHS_msg)) /* size of RHS msg buffer

P T TP T Y

/* GLOBAL INTERNAL FUNCTION DEFINITIONS =/

/t‘#tt‘t#*“t#‘*tt**#tt*t*#***t*##*tt*tii/
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int run();

int add_activation();

int remove_all_activations();
int set_agenda_count();

int set_activations_watch();
int get_activations_watch();
int purge_agenda();

int clear_rule_from_agenda();
int print_actavation();
struct activation *get_next_activation();
int set_execution_error();
int get_execution_error();
int get_change_agenda();

int set_change_agenda{) ;

int global_select();

int get_partner_node();

iat slave_run();

struct fact sptr_to();

/**t##*t*t#*******i#####*t**##***##*#*##/

/* LOCAL INTERNAL VARIABLE DEFINITIONS */

[REERRRERR SRR R AR RR -k Rk kkk kLK

Btatic
static
static
static
static
static

static

struct activaticn *AGENDA = NULL;

long int AGENDA_COUNT = 0;

int vatch_activations = OFF;

int EXECUTION_ERROR = FALSE;

char scurrentrule = NULL;

struct exec_func sexec_list = NULL;

int change_agenda = FALSE;
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slatic int
static int

static int

gray_msg

int

executing = FALSC;
NULL_SALIENCE = -10001;
i= 0;

my_msg_buf,
part_msg_buf;

rules_fired = 0;

/##t*!‘******#‘#**v#*#**#*#*t##*t#*&J***#/

/* GLOBAL EXTERNAL VARIABLE DEFINITIONS =/

JErakkkk Rk Rk kR Rk Rk kR Rk kKRR kR ko kK [

extern RHS_msg

extern struct fbind

extern stru~z: fbind

extern int dim,

extern long start_time;

my_node,
my_pid,
num_nodes,
RHS_type,
RUNNING;

my_RHS_buf;
+gbl_lhs_Ubinds;
xgbl_rhs_binds;

/* dimension of cube

/* node number

/* node pid

/* number of nodes in cube
/% tyoe of action message
/* node running flag

/* start time hack

*/
*/
*/
*/
*/
*/
*/

/t##t#tttt*tt*#**##*###*#i#####**t*##*t##t#*#****‘*t*i###******/

/* RUN: Begins execution of rules.

/*
/*
/*
/*
/*

If run limit is less than */

zero, then rules will be executed until all nodes’agendas*/

are empty.

If run limit is greater than zero, then rules*/

will be executed until either all agendas are empty, the */

run limit has been reached, or a rule execution error

has occured.

Returns the number of rules fired.

*/
*/

ARy T I e Y IILIII I Ly




run

(run_limit)

int run_limit;

{

struct test *commands;

struct fbind *local_vars;

struct activation *rule_to_fire;
char print_space([20];

struct values result;

struct exec_func *exec_ptr;

RHS _msg done_RHS_buf;

done_RHS_buf.type = DONE;
strcpy(Jone_RHS_tuf.fact_str, EO0S);

done_RHS_buf.index — -1;

/* Fire rules until all agendas empty, the run limit

/* has been reached, or a rule execution error occurs.

/‘=-'===================================================

EXECUTION_ERROR = FALSE;

executing = TRUE;

global_select();

while ((my_msg_buf.salience_of_rule '= NULL_SALIENCE) &%

(run_limit '= 0) &&

(EXECUTION_ERROR == FALSE))

*/
*/
*/




rules_fired++;

if (run_limit > 0) { run_limit--; }

if (my_msg_buf.chosen_node == my_node) 1

RUNNING = TRUE;

RHS_type = my_nods + num_nodes;

/t======:=========:=====:=:=*/
/* Bookkeeping and Tracing. */

/t=:=======:===========:====t/

currentrule = AGENDA->rule;

if (get.rules_watch() == ON)
{
sprintf(print_space,"FIRE %4d ",rules_fired);
cl_print("wtrace",print_space);
cl_print("wtrace",currentrule);
cl_print("wtrace",": ");
print_fact_basis('wtrace",AGENDA->basis->binds)

cl_print("wtrace","\n");

if (get_crsv_trace_watch() == ON)
{
sprintf(print_space,"F %-4d ", rules_fired)
cl_print("wecrsv_tr",print_space);
cl_print("wcrsv_tr",currentrule);

cl_print("wcrsv_tr","\n");
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change_agenda = TRUE;

rule_to_fire = AGENDA;

commands = AGENDA->actions;
local_vars = AGENDA->basis->binds;

AGENDA = AGENDA->next;

gbl_lhs_binds = local_vars;

gbl_rhs_binds

NULL;

commands = commands->arg_list;
while ((commands !'= NULL) && (EXECUTION_ERROR
{
generic_compute(commands,&result);
commands = commands->next_arg;

¥

commands = NULL;

/* Return the agenda node to free memory. */

raturnbinds{local _vars);

rto_struct(flink,rule_to_fire->basis);

rtn_struct(activation,rule_to_fire);
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csend(RHS_type, &done_RHS_buf, RHS_SIZE, ALL_NODES, my_pid);
RUNNING = FALSE;
}

else {

slave_run();

/* Remove retracted facts, ephemeral symbols, */
/* variable bindings, and temporary segments. #/

rmv_old_facts();
rem_eph_symbols();
flush_bind_list();

flush_segments();

/* Exacute exec list after performing actions. */

/#=:===:::====:-_-::====::=::::::::z::::::::::::::*/

exec_ptr = exec_list;
while (exec_ptr != NULL)
{
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fwexoc_ptr >ip)();
exec_ptr = execC_ptr->next;

}

global_select(};

executing = FALSE;
EXECUTION_ERROR = FALSE;

return{(rules_fired);

/ttt“t“““‘ttt‘t‘tt‘ﬂ*t#ll“‘#“t##““‘*‘t‘“tl‘tti/
/* Global _Select: Sernds salience of top rule on local =/
/*  AGENDA for comparison. Receives salience of RHS s/
/+*+ to compute and id of ncde holding selected rule +/

/t**t’tt‘t#lttt#ttt‘ttt‘ttttt*t‘ttttt“tt“*#t#t“#‘ttt/

global_select()

{
int partner_node,
count;
if (rules_fired == 1) { start_time = mclock(); } /* st

if (AGENDA == NULL) {
NULL_SALIENCE;

my_msg_buf.salience_of_rule

}

else {

my_msg_buf.salience_of_rule = AGENDA->salience;

}

art
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my_msg_buf.chosen_node = my_node;

/‘:8'_‘ ==:===::=:=:=:==::=::==================:=:::=::‘/
/* Do gray-code compare-exchange down to node 0 */
/‘::::::===:=::::::::==::::::::::::::::::::::::::::::::‘/

for {count = 0; count < dim; count++ ) {

partner_node = get_partner_node(my_node, (power(2,count)));

if (my_ncde > partner_node)
{
csend’my_node, &my_msg_buf,
BUFFER_SIZE,
partner_node, my _pid);
b
else {
crecv(partner_node, &part_msg_buf,
BUFFER_SIZE);
if {part_msg_buf.salience_of_rule >
my_msg_buf.salience_of _rule)
{ my_msg_buf.salience_of_rula =

part_msg_buf.salience_of_rule;

my_msg_buf.chosen_node = part_msg_buf.chosen_node;

bs
}
¥
/¢=====z==z=zzzzzsz=s=zs=zcz=s=s=sss=z=sssos=sx=sssszss=szas/
/* broadcast overall best msg to all ncdes */
/#=====s===zz==z=zs===z:z__zzzc=zzzzzzzz=z=zzzz==s====cz==z=z=z=+/
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if (my_node != 0) {
crecv(0, &my_msg_buf, BUFFER_SIZE);
}

else {

csend(0, &my_msg_buf, BUFFER_SIZE, ALL_NODES, my_pid);
}

/ttttttti‘t##‘!*#t!tt#tt*tt**tt#tt*!tt*tt*ttt##tt#ttt#tlttt'ttttttttttva:/
/* Get_Partner _Node: Returns gray-code partner ncde for message passing */
/t‘ttt##t####‘#t*#ttt‘#?*##t##ttttit#t#‘*“#!*tii*ttitttt#tt#ttttt‘tttttt/
gev _partner_node (this_node, xor_value)

int this_node,

xXor_value;

{
int binary_code;
binary_code = (gray(this_node)) - (gray(xor_value));
return(ginv(binary_code)};

b

/‘tttJt*t‘t‘t#t*‘#*t#*#ﬁ#“*“*t###tt###**‘*#‘t#‘#tt#‘tt*ttttttt#tttt‘ttt/

/* SLAVE_RUN: Receives assertion/retraction to perform from chosen node */

/tttt#tt‘tt#ttttt#t#ttt“t**tt‘ttttt‘#t#“*ﬁ“#t“#t"t*tﬁ#tl‘tttt‘tttttt/

slave_run()

{
struct fact #*ptr;

int my_RHS_type;
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my RHS_type = my_msg_buf.chosen_ncde + num_nodes;

crecv(my_RHS_type. &my_RHS_buf, RAS_SIZE);

vhile (my_RHS_buf.type !'= DONE) {
switch (my_RES_buf.type) {
case ASSERT : a-~sert{(my_RHS_buf.fact_str);
it (rules_fired == 1) {
printf("I%d:\"%s\"\n", my_node,
my _RHS_buf .fact_str);
}

treak;

case RETRACT :if ((ptr = ptr_to(my_RHS_buf.index)) != NULL)
{ retract_fact(ptr); }
break;
default : printf(“ZRROR in switch stmt type\n'); break;
}
crecv(my_RHS_type, &my_RHS_buf, RHS_SIZE};

w

/*t*#***t#i*###******#####******##***t####*‘**t‘t#*###*##*t#**i*****‘*t##/

/* PTR_TO: Returns pointer to the fact with the specified index */

/t*tt*#**t*#**#**##****#**#i**#*#*#i*‘#*#*#t**#it#**#***#**#t*****##*****/

struct fact *ptr_to(index)
FACT_ID index;
{

struct fact #*ptr;

ptr = get_next_fact(NULL);
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while (ptr '= NULL)

{
if (ptr->ID == index)
{ return(ptr); }

ptr = get_next_fact(ptr);

¥

return(NULL); /% fact not found =*/

/*

HyperCLIPS Version 1.0  11/17/89 »/

/t******##*t**t#*i*##*t###i**#*#*ﬁ**#t*#‘*t*t#**‘*#t#**#/

/*
/%
/*
/*
/x
/*

NOTE! : the following routines are compilad within =/
“factmngr.c". Only new routines added for */
HyperCLIPS or original CLIPS routines adapted for  */

HyperCLIPS are shown here. Other routines not shown*/
here must still be compiled in their original CLIPS =*/

form within "factmngr.c" */

/#tt#itt#*#tt##*i##tt*#***t#**t*‘**#t#*‘####*i*#it#*##**/

/tt#t#ttt*t**i*k*##*###*####**#tt‘**tt*#**tt*#**#**t**#*/

/*
/*

"C" Language Integrated Production System */

FACT MANAGER MODULE */

/###itt*#*#itttt#*#****t**#*##tttt*tt*t#tt*t‘#‘*t#**#***/

#include <stdio.h>

#include <string.h>

#include "setup.h"

#include '"msgs.h"




#include '"clips.h"

#include "scanner.h"

#define ALL_NODES -1 /* All nodes’ ids */
#define RHS_SIZE (sizeof (RHS_msg)) /* size of RHS msg buffer =*/

/tt*t*tt*t*tt*t***#t***###***#**#*#*#i**t/

/* GLOBAL INTERNAL FUNCTION DEFINITIONS =/

/t#‘ttt**#t*t**####***#**#**#*#t#t##tt***/

struct fact *get_el();
struct fact *add_fact();
char *build_str();

/*t*tt*t***#******#******#******##**#**#*/

/% GLOBAL EXTERNAL FUNCTION DEFINITIONS %/

/it#‘#*##**##*#*********t*#****i*##******/

extern struct draw *add_symbol () ;
extern struct element =*fast_gv();
extern struct pat_node *network_pointer();

extern char *symbol_string();

R TIrry r  r  r I Y I T Y)

/* LOCAL INTERNAL VARIABLE DEFINITIONS =/

Jrrkxamakkhkhks kb kb kR Rk Rk kR hkk/
static struct fact *garbage_facts = NULL;

static struct fhash *fact_hashtable[SIZE_FACT_HASH];

static int watch_facts;
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static struct fact *factlist;

static struct fact *last_fact;

static long int 1D;

static int change_facts = FALSE;

/t##tt#*t*#*‘*ti#**#t#*******t***t*t**##*/

/* GLOBAL EXTERNAL VARIABLE DEFINITIONS =/

[HEERERR KRR R KRR RNk Rk Rk bRk kook

extern int my_node,
my_pid,
RHS _type,
RUNNING;
extern RHS_msg my_RHS_buf;
extern struct fbind *gbl _1lhs_binds;
extern struct fbind *gbl_rhs_binds;

extern struct funtab *PTR_GET_VAR;

/***************************#**##***‘*‘i****#***##****‘##*****/
/* RETRACT_FACT: Retracts a fact from the fact list given a =/

/* pointer to the fact. */

/*tt#t#***#i**#*t**t**#*ttt####*t*****t##ttttt*#tt*#t*t*t‘*‘#*/

retract_fact(fact_ptr)
struct fact *fact_ptr;
{
FACT_ID fact_num;
struct fact *temp_ptr;
struct match *match_list;

char print_space[20];
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/*==:==============================================

/* Check to see if the fact has already been retracted.

if (RUNNING == TRUE)
{

temp_ptr = fact_ptr;

my_RHS_buf.type = RETRACT;
my_RHS_buf.index = temp_ptr->ID;

strncpy(my _RHS_buf.fact_str,EQS,

=:===*/

strlen(my_RHS_buf.fact_str));/*not used+*/

isend(RHS_type, &my_RHS_buf, RHS_SIZE, ALL_NODES, my_pid);

}

temp_ptr = garbage_facts;
vhile (temp_ptr != NULL)
{
if (temp_ptr == fact_ptr)
{ return(0); }

temp_ptr = temp_ptr->next;

fact_num = fact_ptr->ID;

if (watch_facts == ON)
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{
cl_print(“wtrace",'"<== ");
show_fact("wtrace",fact_ptr);

cl_print("wtrace","\n");

}

if (get_crsv_trace_watch() == ON)
{

cl_print("wecrsv_tr","R ")

sprintf(print_space,"¥-51d " .fact_ptr->ID);

cl_print(“wcrsv_tr",print_space);
print_element("wcrsv_tr",&(fact_ptr->atoms[0]));

cl_print(wcrsv_tr","\n");

}

/t::==:==========:::===================l&/
/* Delete the fact from the fact list. »/

del_hash_fact(fact_ptr);
/* Save the list of pattern matches. #*/

match_list = fact_ptr->list;

if (fact_ptr == last_fact)

{ last_fact = fact_ptr->previous; }

it (fact_ptr->previous == NULL)
{
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/* Delete the head of the fact list. */
factlist = factlist->next;
if (factlist '= NULL)

{ factlist->previous = NULL; }

else

{

/* Delete a fact other than the head of the fact list.

fact_ptr->previous->next = fact_ptr->next;
if (fact_ptr->next != NULL)

{ fact_ptr->next->previous = fact_ptr->previous; }

temp_ptr = garbage_facts;
garbage_facts = fact_ptr;

fact_ptr->next = temp_ptr;

[¥==s=szs====s=s====s=z===z=z=s===ss=zs=zz==z=sss=z==z=zzx/
/* Loop through the list of all the patterns that */
/* matched the fact. */
/#=s=====sa=========s==========z==s==z==zz=zzzzzz=zz=ck/

match_retract(match_list,fact_num);

/#*====s==zs=====s===s==s============s==zz==xzz=z=zc==%/
/* Remove all activations that contain this fact #*/
/* from the agenda. */
[#========szzc==z=====z=z=s=z===szzzz==z==zzz=zz=z=zzzzz=z==#%/

purge_agenda(fact_num) ;
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return(i);

¥

/##tt#**##ttt*t#***t*****iiti**#**##*#*#***‘***##*#*t***#t#***##**###*/

/* ADD_FACT: Places a fact onto the end of the fact list and calls

/* compare to filter the fact through the pattern network. Returns

/* null if the fact was already in the knowledge base, and a

/* pointer to the fact if it was not in the knowledge base.

*/
*/
*/
*/

/‘tt*tt‘#t#*t*t******#*****t*##********#***#**##*#***i*#‘*t#**t*******/

struct fact *add_fact(new_fact)
struct fact *new_fact;
{
int hash_value;
struct fact *temp_fact;

char print_space(20];

hash_value = hash_fact(new_fact);

if (fact_exists(new_fact,hash_value) == 1)

{
rtn_el(new_fact);
return(NULL) ;

}
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if (RUNNING == TRUE)

{

temp_fact = new_fact;
build_str(temp_fact);
my _RHS_buf.type = ASSERT;
my_RHS buf.index = -1; /# not used */
isend(RHS_ _type, &my_RHS_buf, RHS_SIZE, ALL_NODES, my_pid);
}

add_hash_fact(new_fact,hash_value);

/e K34 +hg fact to the fact list. Set the ID for the */

/% fact and install the symbols used by the fact in */
/* the symbol table. */
/*===================================================*/

new_fact->next NULL;
new_fact >1i-t = NULL;
new_fact->previous = last_fact;
if (last_fact == NULL)

{ factlist = new_fact; }
else

{ last_fact->next = new_fact; }

last_fact = new_fact;

ID++;

new_fact->ID = ID;

fact_install(new_fact);
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/* Indicate the addition of the fact to the fact */

/* list if facts are being watched. */

if (watch_facts == ON)
{
cl_print("wtrace","==> ");
show_fact("wtrace',new_fact);
cl_print("wtrace","\n");

N
I

if (get_crsv_trace_watch() == ON)
{

cl_print("wcrsv_tr", "AS ")
sprintf(print_space,"%-51d (",new_fact->ID);
cl_print(“wcrsv_tr”,print_space);
show_elements("wcrsv_tr",new_fact);
cl_print("wecrsv_tr",")");
cl_print("wecrsv_tr","\n");

}

/* Filter the fact through the pattern network. */

/‘====S=========================================‘/

cowparae{new_fact,new_fact->atoms,network_pointer(),1,0,NULL,NULL);
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return(new_fact);

}

/#t**#tt##t##***i***tt##*t**‘#**t*#t*#tt**#*‘#t*#*#i/

/% Build_Str: */

/#t#t##t*ttt#i#*#*t#***t*#*####*&t*t#**‘*‘**#*####*#/

char *build_str(fact_ptr)
struct fact *fact_ptr;

{

struct element *sublist, *elem_ptr;
char *num_to_string();

int length, i;

length = fact_ptr->fact_length;

sublist = fact_ptr->atoms;

strncpy(my_RHS_buf.fact_str,"",strlen(my_RHS_buf.fact_str));

for (i = 0; i < length; i++)
{

elem_ptr = &sublist[i];

if (elem_ptr->type == NUMBER)
{

strcat (my_RHS_buf.fact_str,

num_to_string(elem_ptr->val.fvalue));

}
else if (elem_ptr->type == WORD)
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[

strcat (my_RHS_buf.fact_str,
symbcl_string(elem_ptr->val.hvalue));
}
else 1f (elem_ptr->type == STRING)
{
strcat (my _RHS_buf.fact_str, "\'");
strcat (my_RHS_buf.fact_str,
symbol _string(elem_ptr->val.hvalue));
strcat(my_RHS_buf.fact_str, "\"");
}
if (i + 1 !'= length)

{ strcat(my_RHS buf.fact_str, " "); }

D-37




R TR an

Appewdi B Hyper LIPS Programnee r's Marwal

F1 General Overvicw

HyperCLIPS i~ deseloped using seriad CLIPS as an embedded prograny as devidied i

1o Advanced Provrammine Goande section of the CLIPS Reference Manual (Version 1.4
Piis miatinad, which comes as part of CLIPS Version 130 1= available throneh the Cong
!

prter Software Manaeeomaont and Ieformatiop Center (COSMIC)  the diviriboption paint for

NASA software. Forther informaation can be obtained fromn

Phe HaperCT S procrarmiier may ~soe the CLIPS Reference Manal for anoversion
GECLIPS operation. svntaxs and prosramming,

for HyperO LIPS Diatinlc-aiven

Freounne HoperCOLIPS as a stand-alone expert evstem shelll the iPSC 2 front el
Lot provessor provides the user mrerface to the systenr and loads the node progran o an
active pende nrocessors. The node program ou each node processor initishizos HyperCLIPS
forthar processar doads faects and remplates from host files constinuting the initial wornine
memory for that processor i~ame on alland loads the node processor™ rules from specitivg
Bost files “each e partition should be unique). After they resetting HyperCLIPS Gand
activating desired minctine watch options. the nodes start off svnchironously executing e
miateh stepoin the match select act eveles The identical working memory i« maintained oo

all node procecsor’s throughont execntion,

F3 HyperCLIPS Busie Cyele of Erecution

The basic production system algorithm is executed by HyperCLIPS as a Mateh.

Select At evele i the following order:




e

X , o ,
Lo Muareh Bach processor evaluates the THS of the locyl production miles tode e

which are <ati-fied viven e aurrent content of it Tocal cony of workine nees

Satisfied production rules are entered into the locsd contiiet wer for 1hn P

The start rule v matehed first becanse 1t has an empty LHS

2o8echeet Fach processor chooses the rido with the highoot sidience frong b b

cordlict ser I pone of a processor’s production rules have saribed THS- 4 -0

Fess than the nanioum pos<ibh Hh perCLIPS walicnee i used veo ol wali

i

The processors perforn a grav code compare/exchiance of card proceaanrs o

rodes salicnee and that processar’s node 1D For o 27
ooonaranteed oo hald the hiehest salivnee of anv candidare role o e b

processor that bosts that rale after d compare, excha e The root o
processors the selected male’s salionce and Losting processor™s T w0

1o ?h;ﬂ

ooty prm"\\nr'\ STt of action master and ettt o E

proessors Lo Th it o Gehion siase

BoAqr  The aetion master processor executes a normal, seria CLTES oo
the <ederted rule’s RHS resulting in some combination of oo o o by o
and retractions iby fact 1D These ascortions and motraction o booad aen
the master processor to all slave processors, each of whiol “hen aev e =0

desired fact into/out of its 1ocid working memory.

1. If a termination condition is detected by all processors, i cor i o

the user. Possible termination conditions include the biehest pode <o

on any processor heing the null salience (1o no rules are csted oy e

i , . H

or the run Limit having been reached, If no termination condien o done oo

Step 1 (Matehy

b4 Detarled Design

As mentioned above, HyperCLIPS s developed using serial TIPS s wn e 0

yrogram. The host and node programs replace the original main provran detined for o
34 I

CLIPS. To maintaiv as much of the serial CLIPS modularits, Tnpetionality and e

3:\ Jrei nhee thy roan ORI



possible, HyperCLIPS is accomplished using minimal adaptation of original CLIPS source
code. Specifically. only the run() routine (in CLIPS file “engine.c™) and the add_fact() and
retract_fact() routines (in CLIPS file “factmngr.c™) are altered from their original serial
representation. Some extra service rontines are added to these same two files to implement

HyperCLIPS (see the HyperCLIPS source code in these two files for details).

E.5  Embedding HyperCLIPS

Like serial CLIPS, the HyperCLIPS shell may be used as an embedded program.
The basic approach to embedding HyperCLIPS for use by another application program
on the iPSC/2 is to 1) edit the host and node programs as needed to perform the higher-
level application and 2) call HyperCLIPS using the function calls normally used to control

emmbedded CLIPS.

A certain minimum set of function calls must be made when exccuting HyperCLIPS
as an embedded program. First. init_clips{) must be called prior to any other CLIPS
funiction to initialize the HyperCLIPS environment. Second, all deffact, deftemplate, and
defrule statements (in order) must be loaded as the initial application knowledge base using
the load_rulcs() function. Third, reset_clips() must be called to reset the HyperCLIPS
environment, thus removing all activations from the conflict set and all facts from working
memory, and asserting all facts listed in deffacts statments into working memory. Finally.
the top-level prograry must call run() to initiate expert system execution {allowing rules
to fire). All other CLIPS functious available when embedding CLIPS are available when

embedding HyvperCLIPS.
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Appendix Voo HyparCLIPS Uscrs” Manual

F.1 HyperCLIPS Ocervicw

HyperCLIPS 15 a parallel expert system shell designed to execute on the Intel Sec-
ond Generation Personal Supercomputer (iPSC/2). HyperCLIPS is an adaptation of the
serial C-Language integrated Production System {(CLIPS Version 4.3) developed by 1he
Artificial Intelligence Section (AIS) at NASA/Johnson Space Center (JSC ). Hyper CLIPS
is designed as a research tool for determining the processing speedup attainable through
parallel processing of a given expert system application.

Much of the original source code for the serial version of CLIPS iv used by the Hypoer
CLIPS implenientation. Therefore, those interested in using HyvperCLIPS must first ac-
quire CLIPS. CLIPS Version 1.3 is available through the Computer Software Managenient
and Information Center {COSMIC), which is the distribution point for NASA software.

Further information can be obtained from

COSMIC
382 E. Broad St.
Athens, GA 30602

(404) 542-326%

The additional sonrce code and setup files for HyperCLIPS are available upon request

to

HyperC.IPS

c/o Dr. Gary Lamont

Department of Computer and Electrical Engineering
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433

F.2  Requiremcnts for Running HyperC LIPS

To prepare the HyperCLIPS program for execution, yvou must first compile it using

the Greenhill: C (or compatinle) Compiler and link it with the iPSC/2% run-time system
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and libraries. The iPSC/2 currently uses the UNIX System V/3R6 operating system on
the front-end host processor and Node eXecutive (NX/2) for each of the node processors
in the hypercube. Using the provided setup files mentioned above to compile and link,
the executable file produced for the HyperCLIPS shell is labelled host. Typing host at the

UNIX system prompt will begin execution of HyperCLIPS.

Your own CLIPS-syntax expert system program must satisfy a few requirements
before it can be compiled and executed by HyperCLIPS. All fact and template declara-
tions and all productions must be contained in one or more files, and no declarations and
productions can exist in the same file. All declarations files must be input before anv
productions files are input. To initialize the working memory for vour execution, oune of
vour productions must be a start production which has no conditions in its LHS and which
has vour desired list of initializing assertions in its RHS. The following is a sample start
production:

fde frule start :
(assert (SWITCH (STATUS ON)))
{assert (SORTIE (SET MCCHORD)))
(assert (TAKFEOFF (PLAN ROGER))))

Although this sample start production happens to also be named “start™, any valid
CLIPS production name will do. When execution of your program begins, the start pro-
duction will match and fire before any other productions. If you desire not initialize your

working memory with the start production, simply leave the start production’s RHS empty.

F.3 Interface to HyperCLIPS

HyperCLIPS does not maintain the high-level user interface provided by CLIPS
Version 4.3. Instead, HyperCLIPS leads the user through a series of prompts to allow

input of some key expert system shell commands required for execution to proceed.

After the startup welcome message, the first HyperCLIPS prompt requests the de-

sired dimension of the hypercube:
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Enter cube dimension (1-5):

This prompt allows the user to specify the number of processor nodes to be applied to
solution of his expert svstem application. Note, however, that the response to this prompt
specifies the dimension of the cube. not the number of nodes in the cube. For example, a

response of “3" causes the activation of 23, or eight, processors in the cube.

Next. HyperCLIPS asks for the list of file names containing the fact and template

declarations files. The prompt is of the following form:

Enter fact file names for all processors:

->

The user can enter any number of file names for loading. terminating entry of declarations
files with an “x” (or any invalid file name). The facts and templates specified in these files

are loaded onto each of the active processors.

Loading of the productions files follows a process similar to that of loading decla-
rations files. except that HyperCLIPS prompts for the files to be loaded to each active

processor individually, as follows:

Enter rule file names for processor P

->

During actual execution of HyperCLIPS, the “P™ shown in this sample prompt is
replaced with the I of the processor currently being loaded with productions files. Hy-

perCLIPS does not protect against the user entering the same productions file into more
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than one processor, nor does it check that no single production is loaded into more than
one processor. Parsing of production rules into production files, and the subsequent as-
signment of production files to specific processors, is left to the complete discretion of the
user. Any number of file names may be loaded, entry of files again being terminated with
an “x” (or any invalid file name).

The next prompt requests the desired run limit for execution. The user can specify
the number of rules to fire before suspending execution, or the user may euter -1 to set
HyperCLIPS to run until no more rules remain to fire or until the program terminates

{whichever aoccurs first):

Enter run limit (-1 for no limit):

The final two prompts allow setting of the CLIPS watch options for debugging and

program verification purposes. The prompts appear in the following form:

Enter watch item (lower case):

Enter watch_action_value (1-ON, 0O-0FF):

The user first enters a watch item, which specifies that “rules”, “facts”, “activations”,
“compilations”, or “all” be displaved during expert system shell execution. The watch

action vajue prompt turns the desired watch option ON (1) or OFF (0).

The HyperCLIPS program terminates after a single execution, requiring that re-
sponses to the entire sequence of prompts described above be reaccomplished for subse-
quent runs. This limitation is very inconvenient when a large number of declarations files
and productions files must be entered for each execution. The workaround to avoid re-
tyvping of prompt responses is to use an executable macro file to initiate HyperCLIPS and

provide responses to the user prompts.




F.4 HyperCLIPS Limitations

HyperCLIPS is designed as a parallel processing research tool. As such, its simple
interface environment is not adequate for expert system application program debugging.
The user is encouraged to debug his expert system application using serial CLIPS Version

1.3 before attempting to process the application using HyperCLIPS.

To achieve processing speedups using HyperCLIPS, two conditions must exist:

1. The user’s application must lend itself to fortuitous assignment of production rules

to available processors so as to attain some benefit from production parallelism.

2. The user must employ some algorithmic mechanism to recognize dependencies and
relationships among the production rules, upon which fortuitous assignment to avail-

able processors depends.

In regard to condition 1, HyperCLIPS can only take advantage of the production paral-
lelism inherent in the productions parsed to its separate processors. Concerning condition
2. HyperCLIPS offers no algorithmic inter-production dependency recognition mechanism,

as the burden of assignment of productions to processors is left to the user.
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